论文标题
部分可观测时空混沌系统的无模型预测
Duality for generalized Gan-Gross-Prasad relevant pairs for $p$-adic $\mathrm{GL}_n$
论文作者
论文摘要
本文的主要目的是制定一个概念,称为广义GGP相关对,管理$ p $ - 亚种的通用线性群体的商分支法。这种概念依赖于衍生物(来自Jacquet函数)和积分(来自抛物线归纳)之间的换向关系,为此我们提供表示理论和组合观点。我们的主要结果证明了这些相关对的双重性,这与分支法中的双重限制兼容。
The main goal of this article is to formulate a notion, called a generalized GGP relevant pair, governing the quotient branching law for $p$-adic general linear groups. Such notion relies on a commutation relation between derivatives (from Jacquet functors) and integrals (from parabolic inductions), for which we provide both representation-theoretic and combinatorial perspectives. Our main result proves a duality on those relevant pairs, which is compatible with a dual restriction in branching law.