论文标题
圆柱体计数和旋转区域siegel-deech常数
Cylinder counts and spin refinement of area Siegel-Veech constants
论文作者
论文摘要
我们研究了具有均匀或奇怪的自旋平等的Abelian差异分层组成部分的Siegel-Veech常数。我们证明这些常数可以使用:(i)准模拟形式或(ii)相交理论。这些结果完善了ARXIV的主要定理:1606.04065和Arxiv:1901.01785,描述了整个地层的Siegel-Veech常数。沿着(ii)的证明,我们为圆柱体的Siegel-Veech常数建立了新的身份。
We study the area Siegel-Veech constants of components of strata of abelian differentials with even or odd spin parity. We prove that these constants may be computed using either: (I) quasimodular forms, or (II) intersection theory. These results refine the main theorems of arXiv:1606.04065 and arXiv:1901.01785 which described the area Siegel-Veech constants of the full strata. Along the proof of (II), we establish a new identity for Siegel-Veech constants of cylinders.