论文标题
级联理论的稳定性de Sitter dfps
Stability of the cascading gauge theory de Sitter DFPs
论文作者
论文摘要
我们研究了在Sitter时空中强耦合时级联理论的动力固定点(DFP)的稳定性。我们计算扰动波动的光谱,并确定稳定/不稳定的DFP,其特征在于量规理论的强耦合量表$λ$的比例和背景时空的哈勃常数$ h $。我们在非统一全息模型的引力波动范围内发现了一种新现象:对于$ h \ ggggλ$ cocece the Overaptiation的不同分支,以足够的低$ \ frac {h}λ$ cocile cocale cocece,从而从光谱中删除了一些激动的模式。我们确定,至少在双重超级近似中,级联量规理论没有稳定的DFP(h_ {crit_1},h_ {crit_2})$。 $ h> h_ {crit_2} $的理论的初始状态演变为具有不间断的手性对称性的稳定DFP;而对于$ h <h_ {crit_1} $,状态可以以自发损坏的手性对称性发展到de Sitter真空。
We study stability of the Dynamical Fixed Points (DFPs) of the cascading gauge theory at strong coupling in de Sitter space-time. We compute the spectra of the perturbative fluctuations and identify stable/unstable DFPs, characterized by the ratio of the strong coupling scale $Λ$ of the gauge theory and the Hubble constant $H$ of the background space-time. We discover a new phenomenon in the spectrum of gravitational fluctuations of a non-conformal holographic model: distinct branches of the fluctuations for $H\gg Λ$ coalesce for sufficiently low $\frac{H}Λ$, leading to the removal of some excited modes from the spectrum. We establish that, at least in a dual supergravity approximation, cascading gauge theory does not have a stable DFP for $H\in (H_{crit_1},H_{crit_2})$. Initial states of the theory for $H>H_{crit_2}$ evolve to a stable DFP with unbroken chiral symmetry; while for $H< H_{crit_1}$ the states evolve to a de Sitter vacuum with spontaneously broken chiral symmetry.