论文标题
学习模块化机器人视觉运动策略
Learning Modular Robot Visual-motor Locomotion Policies
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Control policy learning for modular robot locomotion has previously been limited to proprioceptive feedback and flat terrain. This paper develops policies for modular systems with vision traversing more challenging environments. These modular robots can be reconfigured to form many different designs, where each design needs a controller to function. Though one could create a policy for individual designs and environments, such an approach is not scalable given the wide range of potential designs and environments. To address this challenge, we create a visual-motor policy that can generalize to both new designs and environments. The policy itself is modular, in that it is divided into components, each of which corresponds to a type of module (e.g., a leg, wheel, or body). The policy components can be recombined during training to learn to control multiple designs. We develop a deep reinforcement learning algorithm where visual observations are input to a modular policy interacting with multiple environments at once. We apply this algorithm to train robots with combinations of legs and wheels, then demonstrate the policy controlling real robots climbing stairs and curbs.