论文标题

一种快速自动方法,用于从画架绘画中收集的宏观X射线荧光数据

A Fast Automatic Method for Deconvoluting Macro X-ray Fluorescence Data Collected from Easel Paintings

论文作者

Yan, Su, Huang, Jun-Jie, Verinaz-Jadan, Herman, Daly, Nathan, Higgitt, Catherine, Dragotti, Pier Luigi

论文摘要

宏观X射线荧光(MA-XRF)扫描越来越广泛地被遗产科学领域的研究人员广泛使用,以将画架绘画分析为一套非侵入性成像技术之一。为了产生单个化学元件图而生成的生成的MA-XRF数据量的任务称为MA-XRF反卷积。尽管已经为MA-XRF反卷积提出了几种现有方法,但它们需要用户的手动干预,以影响最终结果。最新的AFRID方法可以在没有用户输入的情况下自动反应数据库,但是处理时间很长,并且不会利用空间依赖性。在本文中,我们提出了两种版本的快速自动反向卷积(FAD)方法,用于从带有ADMM(交替的乘数的交替方向方法)和Fista(快速迭代迭代式收缩率thinkage-Thinist-Thinesthisthistured Algorithm)中收集的MA-XRF数据吸管。所提出的FAD方法不仅自动分析数据存储量,并在考虑空间依赖性的情况下产生高质量的元素分布图,而且还大大减少了运行时间。从伦敦国家美术馆的两幅画架绘画收集的MA-XRF数据存储中产生的结果验证了拟议的FAD方法的性能。

Macro X-ray Fluorescence (MA-XRF) scanning is increasingly widely used by researchers in heritage science to analyse easel paintings as one of a suite of non-invasive imaging techniques. The task of processing the resulting MA-XRF datacube generated in order to produce individual chemical element maps is called MA-XRF deconvolution. While there are several existing methods that have been proposed for MA-XRF deconvolution, they require a degree of manual intervention from the user that can affect the final results. The state-of-the-art AFRID approach can automatically deconvolute the datacube without user input, but it has a long processing time and does not exploit spatial dependency. In this paper, we propose two versions of a fast automatic deconvolution (FAD) method for MA-XRF datacubes collected from easel paintings with ADMM (alternating direction method of multipliers) and FISTA (fast iterative shrinkage-thresholding algorithm). The proposed FAD method not only automatically analyses the datacube and produces element distribution maps of high-quality with spatial dependency considered, but also significantly reduces the running time. The results generated on the MA-XRF datacubes collected from two easel paintings from the National Gallery, London, verify the performance of the proposed FAD method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源