论文标题
逻辑电路操作上的随机热力学界限
Stochastic thermodynamic bounds on logical circuit operation
论文作者
论文摘要
使用热力学一致的介观模型,用于现代互补的金属氧化物 - 氧化晶体管晶体管,我们研究了一系列逻辑电路,并探索在热能接近热能量时,最近的热力学不确定性关系如何受到最近的热力学不确定性关系的限制。对于一个不是门,我们找到了与操作方向相关的动力学,以及消散的热量和操作时间确定性之间的权衡。对于存储器存储设备,我们找到了维持该内存状态所需的内存保留时间与能量之间的指数关系。对于时钟,我们发现周期时间的确定性在热能附近的偏置电压上最大化,这种确定性和每个周期散发的热量之间的权衡也是如此。我们确定一种控制机制,可以通过在时钟的共振条件下工作而不会抵消散热的增加而增加周期时间的确定性。这些结果提供了一个框架,用于评估现实计算设备的热力学成本,从而使电路被设计和控制用于热力学最佳操作。
Using a thermodynamically consistent, mesoscopic model for modern complementary metal-oxide-semiconductor transistors, we study an array of logical circuits and explore how their function is constrained by recent thermodynamic uncertainty relations when operating near thermal energies. For a single NOT gate, we find operating direction-dependent dynamics, and a trade-off between dissipated heat and operation time certainty. For a memory storage device, we find an exponential relationship between the memory retention time and energy required to sustain that memory state. For a clock, we find that the certainty in the cycle time is maximized at biasing voltages near thermal energy, as is the trade-off between this certainty and the heat dissipated per cycle. We identify a control mechanism that can increase the cycle time certainty without an offsetting increase in heat dissipation by working at a resonance condition for the clock. These results provide a framework for assessing thermodynamic costs of realistic computing devices, allowing for circuits to be designed and controlled for thermodynamically optimal operation.