论文标题
计算和计算晶格中的联接结态性(重新访问)
Counting and Computing Join-Endomorphisms in Lattices (Revisited)
论文作者
论文摘要
在计算机科学中,涉及晶格和加入尾形的结构无处不在。我们研究了给定有限晶格$ l $的所有联接 - 尾形的$ \ MATHCAL {E}(l)$的基数。特别是,我们以$ \ mathbf {m} _n $显示,$ n $元素的离散订单以上和底部为$ | \ Mathcal {E}(\ Mathbf {M} _n)| = n!\ Mathcal {l} _n(-1)+(n+1)^2 $其中$ \ MATHCAL {l} _n(x)$是$ n $的laguerre多项式。我们还研究了以下问题:给定一个晶格$ l $尺寸$ n $和A集成$ s \ subseteq \ Mathcal {e}(l)尺寸$ M $的$,找到最大的下限$ {\ ligal \ sqcap} _ {\ Mathcal {\ Mathcal {e}(l)} s $。 JOIN-endomormormormism $ {\ ligal \ sqcap} _ {\ Mathcal {e}(l)} s $在认知逻辑,分布式系统和Aumann结构中具有有意义的解释。我们表明,对于分布晶格的$ O(mn)$,可以通过最差的时间复杂性解决此问题,而任意晶格的$ O(mn + n^3)$。在模块化晶格的特殊情况下,我们提出了后一种算法的适应性,可降低其平均时间复杂性。我们提供理论和实验结果以支持这种增强。复杂性是根据算法执行的基本二元格操作表示的。
Structures involving a lattice and join-endomorphisms on it are ubiquitous in computer science. We study the cardinality of the set $\mathcal{E}(L)$ of all join-endomorphisms of a given finite lattice $L$. In particular, we show for $\mathbf{M}_n$, the discrete order of $n$ elements extended with top and bottom, $| \mathcal{E}(\mathbf{M}_n) | =n!\mathcal{L}_n(-1)+(n+1)^2$ where $\mathcal{L}_n(x)$ is the Laguerre polynomial of degree $n$. We also study the following problem: Given a lattice $L$ of size $n$ and a set $S\subseteq \mathcal{E}(L)$ of size $m$, find the greatest lower bound ${\large\sqcap}_{\mathcal{E}(L)} S$. The join-endomorphism ${\large\sqcap}_{\mathcal{E}(L)} S$ has meaningful interpretations in epistemic logic, distributed systems, and Aumann structures. We show that this problem can be solved with worst-case time complexity in $O(mn)$ for distributive lattices and $O(mn + n^3)$ for arbitrary lattices. In the particular case of modular lattices, we present an adaptation of the latter algorithm that reduces its average time complexity. We provide theoretical and experimental results to support this enhancement. The complexity is expressed in terms of the basic binary lattice operations performed by the algorithm.