论文标题

数字双胞胎的全息型通信:一种基于学习的拍卖方法

Holographic-Type Communication for Digital Twin: A Learning-based Auction Approach

论文作者

Zhang, XiuYu, Xu, Minrui, Tan, Rui, Niyato, Dusit

论文摘要

旨在构建物理实体的数字复制品的数字双(DT)技术是提供有效,同时模拟和对现实世界对象的分析的关键。在显示DTS时,支持全息数据(例如光场(LF))的传输的全息型通信(HTC)可以为用户提供一种与全息DTS(HDT)互动的沉浸式方式。但是,有效分配HDT用户和提供商中的交互式和资源密集的高性时服务是一项挑战。在本文中,我们集成了HTC和DT的范例以形成DT系统的HTC,为HDT服务设计一个市场,在该服务中,通过其评估功能评估了HDT用户和提供商的价格,并提出了一种基于拍卖的机制,可以使用基于学习的Doup Dout Dutch Auction(DDA)匹配HDT服务。具体来说,我们应用DDA并培训代理商作为拍卖师的代理,以使用深度加固学习(DRL)动态调整拍卖时钟,以实现最佳的市场效率。仿真结果表明,拟议的基于学习的拍卖师可以在一半的基线方法的拍卖信息交换成本下实现近乎最佳的社会福利。

Digital Twin (DT) technologies, which aim to build digital replicas of physical entities, are the key to providing efficient, concurrent simulation and analysis of real-world objects. In displaying DTs, Holographic-Type Communication (HTC), which supports the transmission of holographic data such as Light Field (LF), can provide an immersive way for users to interact with Holographic DTs (HDT). However, it is challenging to effectively allocate interactive and resource-intensive HDT services among HDT users and providers. In this paper, we integrate the paradigms of HTC and DT to form a HTC for DT system, design a marketplace for HDT services where HDT users' and providers' prices are evaluated by their valuation functions, and propose an auction-based mechanism to match HDT services using a learning-based Double Dutch Auction (DDA). Specifically, we apply DDA and train an agent acting as the auctioneer to adjust the auction clock dynamically using Deep Reinforcement Learning (DRL), aiming to achieve the best market efficiency. Simulation results demonstrate that the proposed learning-based auctioneer can achieve near-optimal social welfare at halved auction information exchange cost of the baseline method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源