论文标题

通过物理知识的神经网络对Landau阻尼的数据驱动建模

Data-driven modeling of Landau damping by physics-informed neural networks

论文作者

Qin, Yilan, Ma, Jiayu, Jiang, Mingle, Dong, Chuanfei, Fu, Haiyang, Wang, Liang, Cheng, Wenjie, Jin, Yaqiu

论文摘要

动力学方法通常在处理微观等离子体物理问题方面是准确的,但是对于大型或多尺度系统而言,计算在计算上昂贵。血浆物理学中的长期问题之一是将动力学物理学整合到流体模型中,这通常是通过复杂的分析封闭项来实现的。在本文中,我们成功地构建了一个使用机器学习中神经网络中包含的隐式流体闭合的多矩流体模型。使用物理知识的神经网络(PINN)和梯度增强物理学的神经网络(GPINN),从Landau阻尼动力学模拟的稀疏采样数据中训练了多臂流体模型。使用PINN或GPINN构建的多功能流体模型再现了电场能的时间演化,包括其阻尼速率以及来自动力学模拟的血浆动力学。此外,我们介绍了GPINN架构的一种变体,即Gpinn $ p $来捕获Landau阻尼过程。 Gpinn $ p $不包括所有方程残差的梯度,而仅将压力方程残差的梯度添加为一个附加约束。在这三种方法中,GPINN $ P $构建的多音液模型提供了最准确的结果。这项工作阐明了大规模系统的准确有效建模,可以扩展到复杂的多尺度实验室,空间和天体物理等离子体物理问题。

Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源