论文标题

量子计量学中的相空间几何形状和最佳状态制备与集体旋转

Phase space geometry and optimal state preparation in quantum metrology with collective spins

论文作者

Muñoz-Arias, Manuel H., Deutsch, Ivan H., Poggi, Pablo M.

论文摘要

我们使用集体旋转重新访问量子计量学方面的众所周知的方案,并提出了基于相空间中半经典描述的最佳状态准备的统一图片。我们展示了该框架如何允许对准备各种阶段有用状态所需的时间尺度进行定量预测,并且这些预测即使对于中等系统尺寸,远离经典限制,这些预测仍然准确。此外,此框架使我们能够构建一个几何图像,该图像将最佳(呈指数速度)纠缠的探针准备与连接鞍点连接相位空间中的鞍点的分离的存在相关联。我们以两轴反扭动和扭曲的汉密尔顿人的范式示例来说明我们的结果,在那里我们为所有相关的最佳时间尺度提供了分析表达式。最后,我们建议对这些模型进行概括,包括$ p $ - 体集体互动(或$ p $ - 订单扭曲),超出了$ p = 2 $的通常情况。使用我们的几何框架,我们证明了这些模型的本地最优性的无关定理,价格为$ p> 2 $。

We revisit well-known protocols in quantum metrology using collective spins and propose a unifying picture for optimal state preparation based on a semiclassical description in phase space. We show how this framework allows for quantitative predictions of the timescales required to prepare various metrologically useful states, and that these predictions remain accurate even for moderate system sizes, surprisingly far from the classical limit. Furthermore, this framework allows us to build a geometric picture that relates optimal (exponentially fast) entangled probe preparation to the existence of separatrices connecting saddle points in phase space. We illustrate our results with the paradigmatic examples of the two-axis counter-twisting and twisting-and-turning Hamiltonians, where we provide analytical expressions for all the relevant optimal time scales. Finally, we propose a generalization of these models to include $p$-body collective interaction (or $p$-order twisting), beyond the usual case of $p=2$. Using our geometric framework, we prove a no-go theorem for the local optimality of these models for $p>2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源