论文标题

剪切流下液态样胶体悬浮液的成对相关功能的微观理论

Microscopic theory for the pair correlation function of liquidlike colloidal suspensions under shear flow

论文作者

Banetta, Luca, Leone, Francesco, Anzivino, Carmine, Murillo, Michael S., Zaccone, Alessio

论文摘要

我们提出了一个理论框架,以完全考虑到对流扩散的边界层结构,研究在强剪切流下集中硬球胶体悬浮液的显微镜结构。我们通过匹配的渐近分子,在实体角度的压缩和延伸扇区中分别用剪切剪切的剪切方程求解了这对。适当的(尽管近似)对不同部门的流体动力相互作用的处理使我们能够构建包含流场对配对相关性影响的平均力潜力。我们将获得的对电势插入Percus-Yevick关系中,并将后者用作封闭,以求解Ornstein-zernike积分方程。对于包装分数$η$和péclet($ \ textrm {pe} $)编号的广泛范围,我们计算了配对相关函数,并提取缩放法律的触点值。对于$ \ textrm {pe}的所有考虑的价值,$,我们观察到理论发现与文献的数字结果之间的一个很好的协议,最多可达到$η的值。我们认为这种行为可能会表明从各向同性相向不均匀的相变的开始,该相位由外部剪切流引起。

We present a theoretical framework to investigate the microscopic structure of concentrated hard-sphere colloidal suspensions under strong shear flows by fully taking into account the boundary-layer structure of convective diffusion. We solve the pair Smoluchowski equation with shear separately in the compressing and extensional sectors of the solid angle, by means of matched asymptotics. A proper, albeit approximate, treatment of the hydrodynamic interactions in the different sectors allows us to construct a potential of mean force containing the effect of the flow field on pair correlations. We insert the obtained pair potential in the Percus-Yevick relation and use the latter as a closure to solve the Ornstein-Zernike integral equation. For a wide range of either the packing fraction $η$ and the Péclet ($\textrm{Pe}$) number, we compute the pair correlation function and extract scaling laws for its value at contact. For all the considered value of $\textrm{Pe},$ we observe a very good agreement between theoretical findings and numerical results from literature, up to rather large values of $η.$ The theory predicts a consistent enhancement of the structure factor $ S(k)$ at $k \to 0,$ upon increasing the $\textrm{Pe}$ number. We argue this behaviour may signal the onset of a phase transition from the isotropic phase to a non-uniform one, induced by the external shear flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源