论文标题
映射保留$ \ ast $ -algebras上三重产品的总和
Mappings preserving sum of triple products on $\ast $-algebras
论文作者
论文摘要
令$ \ mathcal {a} $和$ \ Mathcal {b} $为两个Unital Complex $ \ ast $ -Algebras,以使$ \ Mathcal {a} $具有非平地投影。在本文中,我们研究了生物映射$φ的结构$:\ Mathcal {a} \ rightarrow \ Mathcal {b} $保留三元产品的总和$α_{1} ab^{*} ab^{*} cab^{*}+α_{5} b^{*} ca+α_{6} cb^{*} a,$,其中标量$ \ {α_{k} \} _ {k} _ {k = 1}^{6} $是满足某些条件的复杂数字。给出了获得的结果的应用。
Let $\mathcal{A}$ and $\mathcal{B}$ be two unital complex $\ast $-algebras such that $\mathcal{A}$ has a nontrivial projection. In this paper, we study the structure of bijective mappings $Φ:\mathcal{A}\rightarrow \mathcal{B}$ preserving sum of triple products $α_{1} ab^{*}c+α_{2} acb^{*}+α_{3} b^{*}ac +α_{4} cab^{*}+α_{5} b^{*}ca+α_{6} cb^{*}a,$ where the scalars $\{α_{k}\}_{k=1}^{6}$ are complex numbers satisfying some conditions. Applications of obtained results are given.