论文标题

脉搏有效的量子机学习

Pulse-efficient quantum machine learning

论文作者

Melo, André, Earnest-Noble, Nathan, Tacchino, Francesco

论文摘要

基于参数化量子电路的量子机学习算法是近期量子优势的有希望的候选者。尽管这些算法与当前一代量子处理器兼容,但设备噪声限制了其性能,例如,通过诱导损失景观的指数呈平坦。诸如动​​态脱钩和保利旋转等错误抑制方案通过降低硬件级别的噪声来减轻此问题。该技术工具箱的最新添加是脉搏有效的转卸液,通过利用硬件本地交叉谐振相互作用来减少电路时间表的持续时间。在这项工作中,我们研究了脉搏效率电路对量子机学习的近期算法的影响。我们报告了两个标准实验的结果:具有量子神经网络的合成数据集上的二进制分类和带有量子内核估计的手写数字识别。在这两种情况下,我们都发现脉搏有效的转卸量大大降低了平均电路持续时间,因此,脉冲有效的转卸量可显着提高分类精度。最后,我们将脉搏有效的转卸液应用于汉密尔顿变异的ANSATZ,并表明它延迟了噪声引起的贫瘠高原的发作。

Quantum machine learning algorithms based on parameterized quantum circuits are promising candidates for near-term quantum advantage. Although these algorithms are compatible with the current generation of quantum processors, device noise limits their performance, for example by inducing an exponential flattening of loss landscapes. Error suppression schemes such as dynamical decoupling and Pauli twirling alleviate this issue by reducing noise at the hardware level. A recent addition to this toolbox of techniques is pulse-efficient transpilation, which reduces circuit schedule duration by exploiting hardware-native cross-resonance interaction. In this work, we investigate the impact of pulse-efficient circuits on near-term algorithms for quantum machine learning. We report results for two standard experiments: binary classification on a synthetic dataset with quantum neural networks and handwritten digit recognition with quantum kernel estimation. In both cases, we find that pulse-efficient transpilation vastly reduces average circuit durations and, as a result, significantly improves classification accuracy. We conclude by applying pulse-efficient transpilation to the Hamiltonian Variational Ansatz and show that it delays the onset of noise-induced barren plateaus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源