论文标题

Pieri-Type乘法公式用于量子Grothendieck多项式

Pieri-type multiplication formula for quantum Grothendieck polynomials

论文作者

Naito, Satoshi, Sagaki, Daisuke

论文摘要

本文的目的是证明用于量子Grothendieck多项式的Pieri型乘法公式,该公式由Lenart-Maeno猜想。该公式将使我们能够明确计算(小)量子$ k $ -k $ - 理论中的两个任意(相反)的舒伯特类的量子产品(FL_ {n})$ qk(fl_ {n})$(完整的)flagold $ fl_ {n} $ fl_ {n} $ flopy classect in tate pyter nat the量子的量子$ a_ a_ i { $ qk(fl_ {n})$。

The purpose of this paper is to prove a Pieri-type multiplication formula for quantum Grothendieck polynomials, which was conjectured by Lenart-Maeno. This formula would enable us to compute explicitly the quantum product of two arbitrary (opposite) Schubert classes in the (small) quantum $K$-theory ring $QK(Fl_{n})$ of the (full) flag manifold $Fl_{n}$ of type $A_{n-1}$ on the basis of the fact that quantum Grothendieck polynomials represent (opposite) Schubert classes in $QK(Fl_{n})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源