论文标题

在室温下,在中性激子偏振子冷凝物中电气控制涡流

Electrically controlling vortices in a neutral exciton polariton condensate at room temperature

论文作者

Zhai, Xiaokun, Ma, Xuekai, Gao, Ying, Xing, Chunzi, Gao, Meini, Dai, Haitao, Wang, Xiao, Pan, Anlian, Schumacher, Stefan, Gao, Tingge

论文摘要

用电场操纵骨气冷凝物非常具有挑战性,因为电场不直接与冷凝水的中性颗粒相互作用。在这里,我们演示了一种简单的电力方法,可以在强耦合液晶(LC)微博以CSPBBR $ _3 $ _3 $微镀料作为室温下的活性材料中调整激子极化凝结物的涡度。在这样的微腔中,LC分子主管可以通过电气调节,以控制不同模式的偏振子凝结。对于各向同性的非共振光学泵送,我们证明了以+1,+2,-2和-1为拓扑电荷的涡流的自发形成。拓扑涡流电荷由应用于微腔样品的1至10 V范围的电压控制。该控制是通过内置电势梯度的相互作用,光学活跃的钙钛矿微孔板的各向异性以及我们系统中具有故意断裂旋转对称性的系统中的电气控制的LC分子主管。除了在室温下对已达到的电动极化涡流控制的基本兴趣外,我们的工作还为微米大小的发射器铺平了对发射光的相位剖面的电动发射器的道路,并量化了信息处理和集成到光子电路中的轨道角动量。

Manipulating bosonic condensates with electric fields is very challenging as the electric fields do not directly interact with the neutral particles of the condensate. Here we demonstrate a simple electric method to tune the vorticity of exciton polariton condensates in a strong coupling liquid crystal (LC) microcavity with CsPbBr$_3$ microplates as active material at room temperature. In such a microcavity, the LC molecular director can be electrically modulated giving control over the polariton condensation in different modes. For isotropic non-resonant optical pumping we demonstrate the spontaneous formation of vortices with topological charges of +1, +2, -2, and -1. The topological vortex charge is controlled by a voltage in the range of 1 to 10 V applied to the microcavity sample. This control is achieved by the interplay of a built-in potential gradient, the anisotropy of the optically active perovskite microplates, and the electrically controllable LC molecular director in our system with intentionally broken rotational symmetry. Besides the fundamental interest in the achieved electric polariton vortex control at room temperature, our work paves the way to micron-sized emitters with electric control over the emitted light's phase profile and quantized orbital angular momentum for information processing and integration into photonic circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源