论文标题

吉布斯国家及其经典限制

Gibbs states and their classical limit

论文作者

van de Ven, Christiaan J. F.

论文摘要

$ c^*$ - 代数的连续束提供了一个严格的框架来研究量子理论的热力学极限。如果捆绑包允许严格的变形量化的附加结构(从Rieffel的意义上),则可以研究量子系统的经典限制,即一种数学形式主义,该数学形式主义检查了代数量子状态与相位空间上的概率度量的收敛性(通常是A Poisson或Symplectic歧管)。通过这种方式,我们首先证明了Gibbs状态的经典限制的存在,该限制在该政权中使用了Schrödinger的类别,Planck的常数$ \ hbar $出现在Laplacian的前方,其接近零。我们还表明,随后的极限对应于满足所谓的经典或静态KMS条件的唯一概率度量。随后,我们对大颗粒制度中平均场量子自旋系统的自由能进行了类似的研究,并讨论了相关Gibbs状态的经典限制的存在。最后,简短的部分用于大型自旋极限的单位位点量子自旋系统。

A continuous bundle of $C^*$-algebras provides a rigorous framework to study the thermodynamic limit of quantum theories. If the bundle admits the additional structure of a strict deformation quantization (in the sense of Rieffel) one is allowed to study the classical limit of the quantum system, i.e. a mathematical formalism that examines the convergence of algebraic quantum states to probability measures on phase space (typically a Poisson or symplectic manifold). In this manner we first prove the existence of the classical limit of Gibbs states illustrated with a class of Schrödinger operators in the regime where Planck's constant $\hbar$ appearing in front of the Laplacian approaches zero. We additionally show that the ensuing limit corresponds to the unique probability measure satisfying the so-called classical or static KMS- condition. Subsequently, we conduct a similar study on the free energy of mean-field quantum spin systems in the regime of large particles, and discuss the existence of the classical limit of the relevant Gibbs states. Finally, a short section is devoted to single site quantum spin systems in the large spin limit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源