论文标题
无人机网络中的协作蜜罐防御:一种基于学习的游戏方法
Collaborative Honeypot Defense in UAV Networks: A Learning-Based Game Approach
论文作者
论文摘要
无人驾驶汽车(无人机)的扩散为任何地方和任何时间提供了按需服务提供的新机会,但也使无人机面临各种网络威胁。低/中等相互作用的蜜罐为积极保护移动物联网(尤其是无人机网络)提供了有希望的轻巧防御。尽管以前的研究主要集中在蜜罐系统的设计和攻击模式识别上,但激励无人机的参与(例如,在蜜罐中共享被困的攻击数据)的激励问题仍未得到共同抵抗分布式和复杂的攻击。本文提出了一种新颖的游戏理论协作防御方法,以解决网络动态和无人机的多维私人信息(例如有效的防御数据(VDD)卷,通信延迟和无人机成本)的最佳,公平和可行的激励设计。具体来说,我们首先在无人机和网络运营商之间在部分和完整的信息不对称方案下开发蜜罐游戏。然后,使用合同理论方法来解决预算可行性,真实性,公平性和计算效率的最佳VDD奖励合同设计问题,并通过部分信息不对称地解决。此外,在完整的信息不对称下,我们设计了分布式增强学习算法,以动态设计适用于随着时变的无人机网络中不同类型的无人机的最佳合同。广泛的模拟表明,与传统计划相比,该计划的计划可以激发无人机在VDD共享中的合作并提高防御效果。
The proliferation of unmanned aerial vehicles (UAVs) opens up new opportunities for on-demand service provisioning anywhere and anytime, but also exposes UAVs to a variety of cyber threats. Low/medium interaction honeypots offer a promising lightweight defense for actively protecting mobile Internet of things, particularly UAV networks. While previous research has primarily focused on honeypot system design and attack pattern recognition, the incentive issue for motivating UAV's participation (e.g., sharing trapped attack data in honeypots) to collaboratively resist distributed and sophisticated attacks remains unexplored. This paper proposes a novel game-theoretical collaborative defense approach to address optimal, fair, and feasible incentive design, in the presence of network dynamics and UAVs' multi-dimensional private information (e.g., valid defense data (VDD) volume, communication delay, and UAV cost). Specifically, we first develop a honeypot game between UAVs and the network operator under both partial and complete information asymmetry scenarios. The optimal VDD-reward contract design problem with partial information asymmetry is then solved using a contract-theoretic approach that ensures budget feasibility, truthfulness, fairness, and computational efficiency. In addition, under complete information asymmetry, we devise a distributed reinforcement learning algorithm to dynamically design optimal contracts for distinct types of UAVs in the time-varying UAV network. Extensive simulations demonstrate that the proposed scheme can motivate UAV's cooperation in VDD sharing and improve defensive effectiveness, compared with conventional schemes.