论文标题

相互关联的运输系统中的自适应交通信号控制器的基于强化学习的网络攻击模型

Reinforcement Learning based Cyberattack Model for Adaptive Traffic Signal Controller in Connected Transportation Systems

论文作者

Irfan, Muhammad Sami, Rahman, Mizanur, Atkison, Travis, Dasgupta, Sagar, Hainen, Alexander

论文摘要

在连接的运输系统中,自适应交通信号控制器(ATSC)利用通过无线连接(即连接的车辆)从车辆接收到的实时车辆轨迹数据来调节绿时间。但是,这种无线连接的ATSC增加了网络攻击表面,并增加了它们对各种网络攻击模式的脆弱性,可以利用这些模式在道路网络中引起重大拥堵。攻击者可能会获得经济利益,以创造特定道路的交通拥堵。一种这样的模式是“ Sybil”攻击,其中攻击者通过产生伪造的基本安全消息(BSM)在网络中创建假车辆,从而模仿遵循道路交通规则的实际连接车辆。攻击者的最终目标是通过以速率产生假或“ Sybil”车辆来阻止路线,以使信号正时和相位变化发生,而不会标记任何车辆数量的任何突然变化。由于车辆到达率和ATSC算法的高度非线性和不可预测的性质,很难找到Sybil车辆的最佳速率,这将从交叉路口的不同方法中注入。因此,有必要开发一个智能的网络攻击模型来证明这种攻击的存在。在这项研究中,为等待时间的ATSC开发了基于增强学习的网络攻击模型。具体而言,对RL代理进行了培训,以学习最佳的Sybil车辆注入速率,以创建用于方法的交通拥堵。我们的分析表明,RL代理可以学习创建智能攻击的最佳政策。

In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles through wireless connectivity (i.e., connected vehicles) to regulate green time. However, this wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes, which can be leveraged to induce significant congestion in a roadway network. An attacker may receive financial benefits to create such a congestion for a specific roadway. One such mode is a 'sybil' attack in which an attacker creates fake vehicles in the network by generating fake Basic Safety Messages (BSMs) imitating actual connected vehicles following roadway traffic rules. The ultimate goal of an attacker will be to block a route(s) by generating fake or 'sybil' vehicles at a rate such that the signal timing and phasing changes occur without flagging any abrupt change in number of vehicles. Because of the highly non-linear and unpredictable nature of vehicle arrival rates and the ATSC algorithm, it is difficult to find an optimal rate of sybil vehicles, which will be injected from different approaches of an intersection. Thus, it is necessary to develop an intelligent cyber-attack model to prove the existence of such attacks. In this study, a reinforcement learning based cyber-attack model is developed for a waiting time-based ATSC. Specifically, an RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s). Our analyses revealed that the RL agent can learn an optimal policy for creating an intelligent attack.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源