论文标题
经典弱不可整合多体系统的热化
Thermalization of Classical Weakly Nonintegrable Many-Body Systems
论文作者
论文摘要
我们将研究专用于具有宏观自由度的系统的弱不可整合动力学的主题。我们的主要关注点是热化的时间尺度与混乱的时间尺度之间的关系。选择适当的可观察物和方程结构将它们耦合在一起;识别弱不可集成动力学的类别和开发工具来诊断这些类别的特定属性。我们讨论了用于热化时间计算的现场方法中的传统方法,并利用它们来研究缩放时间尺度,并靠近可集成的极限。然后,我们基于大型系统的完整Lyapunov光谱计算来详细介绍一个新的框架,以此作为表征弱非整合性的强大工具。特别是,Lyapunov Spectrum缩放提供了定量描述,使我们能够推断出可观察到的基础网络的结构。与整合限制的接近性与热化时间尺度的快速增长有关,从而导致潜在的数值挑战。我们通过使用计算高效模型 - 单位地图进行数值测试来解决这些挑战。用于数值应用的统一地图的最大优势是无时间误差的演变。我们使用这些优势来执行与可集成限制的极端时间计算和系统尺寸计算。为了证明获得的结果范围,我们报告了开发框架在哈密顿系统中的应用。
We devote our studies to the subject of weakly nonintegrable dynamics of systems with a macroscopic number of degrees of freedom. Our main points of interest are the relations between the timescales of thermalization and the timescales of chaotization; the choice of appropriate observables and the structure of equations coupling them; identifying the classes of weakly nonintegrable dynamics and developing tools to diagnose the properties specific to such classes. We discuss the traditional in the field methods for thermalization timescale computation and employ them to study the scaling the timescale with the proximity to the integrable limit. We then elaborate on a novel framework based on the full Lyapunov spectra computation for large systems as a powerful tool for the characterization of weak nonintegrability. In particular, the Lyapunov spectrum scaling offers a quantitative description allowing us to infer the structure of the underlying network of observables. Proximity to integrable limit is associated with the rapid growth of thermalization timescales and, thus, potential numerical challenges. We solve these challenges by performing numerical tests using computationally efficient model - unitary maps. The great advantage of unitary maps for numerical applications is time-discrete error-free evolution. We use these advantages to perform large timescale and system size computations in extreme proximity to the integrable limit. To demonstrate the scope of obtained results we report on the application of the developed framework to Hamiltonian systems.