论文标题

深度元学习,以选择精确的超声乳房质量分类器

Deep meta-learning for the selection of accurate ultrasound based breast mass classifier

论文作者

Byra, Michal, Karwat, Piotr, Ryzhankow, Ivan, Komorowski, Piotr, Klimonda, Ziemowit, Fura, Lukasz, Pawlowska, Anna, Zolek, Norbert, Litniewski, Jerzy

论文摘要

基于手工制作的形态和纹理特征的标准分类方法在超声(US)的乳房质量分化方面取得了良好的性能。与通常被认为是“黑盒”模型的深度神经网络相比,经典技术是基于具有良好医学和物理解释的功能。但是,基于形态特征的分类器通常在阴影伪像且定义不明的质量边界的情况下通常表现不佳,而当美国图像太嘈杂时,基于纹理的分类器可能会失败。因此,在实践中,根据特定美国图像的外观选择分类方法是有益的。在这项工作中,我们开发了一个深度的元网络,可以自动处理输入乳腺质量的图像,并建议将基于形状或纹理的分类器应用于乳腺质量分化。我们的初步结果表明,元学习技术可用于根据手工制作的功能提高标准分类器的性能。通过提出的基于元学习的方法,我们在接收器操作特征曲线下达到了0.95的面积,精度为0.91。

Standard classification methods based on handcrafted morphological and texture features have achieved good performance in breast mass differentiation in ultrasound (US). In comparison to deep neural networks, commonly perceived as "black-box" models, classical techniques are based on features that have well-understood medical and physical interpretation. However, classifiers based on morphological features commonly underperform in the presence of the shadowing artifact and ill-defined mass borders, while texture based classifiers may fail when the US image is too noisy. Therefore, in practice it would be beneficial to select the classification method based on the appearance of the particular US image. In this work, we develop a deep meta-network that can automatically process input breast mass US images and recommend whether to apply the shape or texture based classifier for the breast mass differentiation. Our preliminary results demonstrate that meta-learning techniques can be used to improve the performance of the standard classifiers based on handcrafted features. With the proposed meta-learning based approach, we achieved the area under the receiver operating characteristic curve of 0.95 and accuracy of 0.91.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源