论文标题
使用Abacussummit Lightcones的Galaxy聚类统计数据的完整前向模型
Full forward model of galaxy clustering statistics with AbacusSummit lightcones
论文作者
论文摘要
超出标准2点相关函数(2PCF)以外的新型摘要统计数据对于从小尺度(R <30MPC/H)星系聚类中捕获完整的天体物理和宇宙学信息是必要的。但是,对小规模的2PCF统计数据的分析是具有挑战性的,因为我们缺乏对星系领域的任意汇总统计数据的适当处理。在本文中,我们使用大型的高保真Abacussummit Lightcones为广泛的摘要统计数据开发了完整的前向建模管道,该管道构成了许多系统效应,但也保持灵活性和计算有效,以实现后验抽样。我们使用两个独立的摘要统计信息:标准的2PCF和Nove K-The最近的邻居(KNN)统计数据,将前瞻性模型方法应用于完全逼真的模拟星系目录,并证明我们可以在基础的Galaxy-Halo连接模型上恢复对基础Galaxy-Halo连接模型的公正约束,这些统计数据敏感所有顺序的相关功能。我们将在后续纸中将这种方法扩展到完整的宇宙学模拟器。我们预计,当应用于即将进行的调查(例如DESI)时,这将成为一种强大的方法,我们可以利用广泛的红移范围内的众多摘要统计信息,从非线性尺度中最大程度地提取信息。
Novel summary statistics beyond the standard 2-point correlation function (2PCF) are necessary to capture the full astrophysical and cosmological information from the small-scale (r < 30Mpc/h) galaxy clustering. However, the analysis of beyond-2PCF statistics on small scales is challenging because we lack the appropriate treatment of observational systematics for arbitrary summary statistics of the galaxy field. In this paper, we develop a full forward modeling pipeline for a wide range of summary statistics using the large high-fidelity AbacusSummit lightcones that accounts for many systematic effects but also remains flexible and computationally efficient to enable posterior sampling. We apply our forward model approach to a fully realistic mock galaxy catalog and demonstrate that we can recover unbiased constraints on the underlying galaxy-halo connection model using two separate summary statistics: the standard 2PCF and the novel k-th nearest neighbor (kNN) statistics, which are sensitive to correlation functions of all orders. We will extend this method to a full cosmology emulator in a follow up paper. We expect this to become a powerful approach when applying to upcoming surveys such as DESI where we can leverage a multitude of summary statistics across a wide redshift range to maximally extract information from the non-linear scales.