论文标题

调度方法:一种基于熵的基于熵的Riemann求解器,用于理想的磁性水力动力学

DISPATCH methods: an approximate, entropy-based Riemann solver for ideal magnetohydrodynamics

论文作者

Popovas, Andrius

论文摘要

随着超级计算机的发展,我们现在可以负担得起尺度非常大的模拟。在天体物理应用中,例如模拟太阳能,恒星和行星气氛,星际介质等;物理量,例如气压,密度,温度,等离子体$β$,马赫,雷诺数的数量可能会因数量级而变化。这需要一个可靠的求解器,该求解器可以处理非常广泛的条件,并且能够在适用的情况下维持静水平衡。我们重新制定了Godunov型HLLD RIEMANN求解器,即在一系列马赫数中保持静水平衡是适当的,在大气应用中,动力和磁能在没有任何临时校正的情况下在热能上占主导地位。我们将求解器更改为使用熵而不是总能量作为MHD方程系统中的主要热力学变量。熵不是保守的,当动能和磁能转化为热量时,它会增加。我们建议使用基于熵的riemann求解器作为已经广泛使用的Riemann求解器制剂的替代方法,在该配方中可能是有益的。我们进行了一系列具有不同条件的标准测试,并表明Godunov型Riemann Solver的新配方工作很有希望。

With the advance of supercomputers we can now afford simulations with very large ranges of scales. In astrophysical applications, e.g. simulating Solar, stellar and planetary atmospheres, interstellar medium, etc; physical quantities, like gas pressure, density, temperature, plasma $β$, Mach, Reynolds numbers can vary by orders of magnitude. This requires a robust solver, which can deal with a very wide range of conditions and be able to maintain hydrostatic equilibrium where it is applicable. We reformulate a Godunov-type HLLD Riemann solver that it would be suitable to maintain hydrostatic equilibrium in atmospheric applications in a range of Mach numbers, regimes where kinetic and magnetic energies dominate over thermal energy without any ad-hoc corrections. We change the solver to use entropy instead of total energy as the primary thermodynamic variable in the system of MHD equations. The entropy is not conserved, it increases when kinetic and magnetic energy is converted to heat, as it should. We propose using an approximate entropy - based Riemann solver as an alternative to already widely used Riemann solver formulations where it might be beneficial. We conduct a series of standard tests with varying conditions and show that the new formulation for the Godunov type Riemann solver works and is promising.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源