论文标题

部分可观测时空混沌系统的无模型预测

Characterizing and recognizing exact-distance squares of graphs

论文作者

Bai, Yandong, Cortés, Pedro P., Naserasr, Reza, Quiroz, Daniel A.

论文摘要

对于图$ g =(v,e)$,其精确距离广场,$ g^{[\ sharp 2]} $,是带顶点set $ v $的图形,并且在$ x $ x $ x $和$ y $之间的边缘和$ x $和$ y $之间的边缘是$ y $,$ x $和y $ aken $ y $具有距离(确切的)$ 2 $ in $ g $。图$ g $是$ g^{[\ sharp 2]} $的精确距离平方根。我们给出具有精确距离平方根的图表的表征,我们的表征很容易导致多项式识别算法。我们表明,识别具有双分裂精确距离平方根的图是NP的完整。这两个结果对(通常)图形正方形的已知结果强烈对比。然后,我们将具有树作为精确距离平方根的图表表征,并从中获得这些图形的多项式时间识别算法。最后,我们表明,与通常的平方根不同,图可能具有(任意的许多)非晶状精确距离正方形的平方根,即树。

For a graph $G=(V,E)$, its exact-distance square, $G^{[\sharp 2]}$, is the graph with vertex set $V$ and with an edge between vertices $x$ and $y$ if and only if $x$ and $y$ have distance (exactly) $2$ in $G$. The graph $G$ is an exact-distance square root of $G^{[\sharp 2]}$. We give a characterization of graphs having an exact-distance square root, our characterization easily leading to a polynomial-time recognition algorithm. We show that it is NP-complete to recognize graphs with a bipartite exact-distance square root. These two results strongly contrast known results on (usual) graph squares. We then characterize graphs having a tree as an exact-distance square root, and from this obtain a polynomial-time recognition algorithm for these graphs. Finally, we show that, unlike for usual square roots, a graph might have (arbitrarily many) non-isomorphic exact-distance square roots which are trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源