论文标题

从警报中学习:一种可靠的学习方法,用于基于精确的基于光绘画的心房颤动检测,使用八百万个样品标记为不精确的心律失常警报

Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection using Eight Million Samples Labeled with Imprecise Arrhythmia Alarms

论文作者

Ding, Cheng, Guo, Zhicheng, Rudin, Cynthia, Xiao, Ran, Shah, Amit, Do, Duc H., Lee, Randall J, Clifford, Gari, Nahab, Fadi B, Hu, Xiao

论文摘要

心房颤动(AF)是一种常见的心律失常,如果未发现和治疗,对健康后果有严重的健康后果。使用具有光摄影作用(PPG)传感器的可穿戴设备检测AF和深层神经网络,在商业解决方案中使用专有算法表明了一些成功。但是,在门诊环境中,这种连续AF检测范式的进一步发展,朝着整个人口筛查的用例中,仍然面临着几个挑战,其中之一是缺乏大型标记的培训数据。为了应对这一挑战,在这项研究中,我们建议利用从床旁患者监视器的AF警报来标记并发的PPG信号,导致到目前为止最大的PPG-AF数据集(来自24100名患者的8.5m 30秒记录),并证明了一种实用的方法来构建大型标记PPG数据集。此外,我们认识到,因此获得的AF标签包含错误,这是因为从床边监视器中内置算法产生的虚假AF警报。在这种情况下,处理具有未知分布特征的标签噪声需要高级算法。因此,我们介绍和开源的新型损失设计,集群成员资格一致性(CMC)损失,以减轻标签错误。通过将CMC与从嘈杂的标签竞争中选择的最新方法进行比较,我们在多个方面证明了它的优势,包括在PPG数据中处理标签噪声,对质量质量较差的信号的韧性以及计算效率。

Atrial fibrillation (AF) is a common cardiac arrhythmia with serious health consequences if not detected and treated early. Detecting AF using wearable devices with photoplethysmography (PPG) sensors and deep neural networks has demonstrated some success using proprietary algorithms in commercial solutions. However, further advancement of this paradigm of continuous AF detection in ambulatory settings, towards a population-wide screening use case, still faces several challenges, one of which is the lack of large-scale labeled training data. To address this challenge, in this study, we propose to leverage AF alarms from bedside patient monitors to label concurrent PPG signals, resulting in the largest PPG-AF dataset so far (8.5M 30-second records from 24100 patients) and demonstrating a practical approach to build large labeled PPG datasets. Furthermore, we recognize that the AF labels thus obtained contain errors because of false AF alarms generated from imperfect built-in algorithms from bedside monitors. Dealing with label noise with unknown distribution characteristics in this case requires advanced algorithms. We, therefore, introduce and open source a novel loss design, the cluster membership consistency (CMC) loss, to mitigate label errors. By comparing CMC with state-of-the-art methods selected from a noisy label competition, we demonstrate its superiority in multiple aspects including handling label noise in PPG data, resilience to poor-quality signals, and computational efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源