论文标题

易于访问的文本到图像生成大规模增大人口刻板印象

Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale

论文作者

Bianchi, Federico, Kalluri, Pratyusha, Durmus, Esin, Ladhak, Faisal, Cheng, Myra, Nozza, Debora, Hashimoto, Tatsunori, Jurafsky, Dan, Zou, James, Caliskan, Aylin

论文摘要

现在,将用户写入文本说明转换为图像的机器学习模型现在已在线广泛使用,数以百万计的用户每天生成数百万张图像。我们研究了这些模型放大危险且复杂的刻板印象的潜力。我们发现广泛的普通提示会产生刻板印象,包括提示只是提及特质,描述符,职业或对象。例如,我们发现提示基本特征或社会角色的案例,导致图像增强白色为理想,促使职业导致种族和性别差异的扩大,并提示导致对美国规范的对象。无论提示是否明确提及身份和人口统计语言还是避免这种语言,都存在刻板印象。此外,尽管采取了缓解策略,刻板印象仍然存在。用户都没有尝试通过请求具有特定反式型的图像,也没有尝试通过添加系统``护栏''的机构尝试来对抗刻板印象。我们的分析证明了人们对当今模型的影响,展示引人注目的典范的关注,并将这些发现与对社会科学和人文主义学科造成的危害的深刻见解联系起来。这项工作有助于阐明语言视觉模型中独特复杂的偏见,并证明了文本到图像生成模型的大规模部署的方式导致刻板印象的大规模传播和造成的危害。

Machine learning models that convert user-written text descriptions into images are now widely available online and used by millions of users to generate millions of images a day. We investigate the potential for these models to amplify dangerous and complex stereotypes. We find a broad range of ordinary prompts produce stereotypes, including prompts simply mentioning traits, descriptors, occupations, or objects. For example, we find cases of prompting for basic traits or social roles resulting in images reinforcing whiteness as ideal, prompting for occupations resulting in amplification of racial and gender disparities, and prompting for objects resulting in reification of American norms. Stereotypes are present regardless of whether prompts explicitly mention identity and demographic language or avoid such language. Moreover, stereotypes persist despite mitigation strategies; neither user attempts to counter stereotypes by requesting images with specific counter-stereotypes nor institutional attempts to add system ``guardrails'' have prevented the perpetuation of stereotypes. Our analysis justifies concerns regarding the impacts of today's models, presenting striking exemplars, and connecting these findings with deep insights into harms drawn from social scientific and humanist disciplines. This work contributes to the effort to shed light on the uniquely complex biases in language-vision models and demonstrates the ways that the mass deployment of text-to-image generation models results in mass dissemination of stereotypes and resulting harms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源