论文标题

可区分的随机光环占用分布

Differentiable Stochastic Halo Occupation Distribution

论文作者

Horowitz, Benjamin, Hahn, ChangHoon, Lanusse, Francois, Modi, Chirag, Ferraro, Simone

论文摘要

在这项工作中,我们证明了如何在深度强化学习中开发的可区分随机抽样技术如何用于对基于随机的,基于模拟的前向模型进行有效的参数推断。作为一个特别的例子,我们关注的是估计用于将星系与暗物质晕圈连接的光晕占用分布(HOD)模型参数(HOD)模型的问题。通过连续放松和梯度参数化技术的组合,我们可以通过离散的Galaxy目录实现获得明确定义的梯度。访问这些梯度使我们能够利用有效的采样方案,例如哈密顿蒙特卡洛,并大大加快参数推断。我们在使用Zheng等人的Bolshoi模拟产生的模拟星系目录上演示了我们的技术。 2007 HOD模型,发现与标准的马尔可夫链蒙特卡洛技术相同的后代,收敛效率增加了约8倍。我们可区分的HOD模型在完整的宇宙结构和宇宙学分析的完整模型方法中也具有广泛的应用。

In this work, we demonstrate how differentiable stochastic sampling techniques developed in the context of deep Reinforcement Learning can be used to perform efficient parameter inference over stochastic, simulation-based, forward models. As a particular example, we focus on the problem of estimating parameters of Halo Occupancy Distribution (HOD) models which are used to connect galaxies with their dark matter halos. Using a combination of continuous relaxation and gradient parameterization techniques, we can obtain well-defined gradients with respect to HOD parameters through discrete galaxy catalogs realizations. Having access to these gradients allows us to leverage efficient sampling schemes, such as Hamiltonian Monte-Carlo, and greatly speed up parameter inference. We demonstrate our technique on a mock galaxy catalog generated from the Bolshoi simulation using the Zheng et al. 2007 HOD model and find near identical posteriors as standard Markov Chain Monte Carlo techniques with an increase of ~8x in convergence efficiency. Our differentiable HOD model also has broad applications in full forward model approaches to cosmic structure and cosmological analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源