论文标题

部分可观测时空混沌系统的无模型预测

On the integral Hodge conjecture for real abelian threefolds

论文作者

Fortman, Olivier de Gaay

论文摘要

我们证明了几类真正的Abelian三倍类的真正积分霍奇猜想。例如,我们证明了真正的Abelian三倍$ a $的属性,其真正的locus $ a(\ Mathbb r)$连接,以及真正的Abelian Trix $ a $ a $ a $ a $ a = b \ times e $ a abelian surface $ b $ b $ b $ b $ b $ b $ b $ and elliptic curve $ e $与connection curveed curve $ e $搭配实际locus $ e(reall locus $ e(Math)$ e(\ Mathbb R)。此外,我们表明,每个真正的Abelian三倍都满足了真正的整体杂物猜想模型扭转,并将一般案例减少到Jacobian案例中。

We prove the real integral Hodge conjecture for several classes of real abelian threefolds. For instance, we prove the property for real abelian threefolds $A$ whose real locus $A(\mathbb R)$ is connected, and for real abelian threefolds $A$ which are a product $A = B \times E$ of an abelian surface $B$ and an elliptic curve $E$ with connected real locus $E(\mathbb R)$. Moreover, we show that every real abelian threefold satisfies the real integral Hodge conjecture modulo torsion, and reduce the general case to the Jacobian case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源