论文标题
部分可观测时空混沌系统的无模型预测
Similarity signature curves for forming periodic orbits in the Lorenz system
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we systematically investigate the short periodic orbits of the Lorenz system by the aid of the similarity signature curve, and a novel method to find the short-period orbits of the Lorenz system is proposed. The similarity invariants are derived by the equivariant moving frame theory and then the similarity signature curve occurs along with them. The similarity signature curve of the Lorenz system presents a more regular behavior than the original one. By combining the sliding window method, the quasi-periodic orbits can be detected numerically, all periodic orbits with period $p \leqslant 8$ in the Lorenz system are found, and their period lengths and symbol sequences are calculated.