论文标题

有效的全球优化算法,具有本地Lipschitz常数的自适应估计值

An Efficient Global Optimization Algorithm with Adaptive Estimates of the Local Lipschitz Constants

论文作者

D'Agostino, Danny

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this work, we present a new deterministic partition-based Global Optimization (GO) algorithm that uses estimates of the local Lipschitz constants associated with different sub-regions of the domain of the objective function. The estimates of the local Lipschitz constants associated with each partition are the result of adaptively balancing the global and local information obtained so far from the algorithm, given in terms of absolute slopes. We motivate a coupling strategy with local optimization algorithms (both gradient-based and derivative-free) to accelerate the convergence speed of the proposed approach. In the end, we compare our approach HALO (Hybrid Adaptive Lipschitzian Optimization) with respect to popular GO algorithms using hundreds of test functions. From the numerical results, the performance of HALO is very promising and can extend our arsenal of efficient procedures for attacking challenging real-world GO problems. The Python code of HALO is publicly available on GitHub. \url{https://github.com/dannyzx/HALO}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源