论文标题

可变的马尔可夫动力学作为多焦点镜头,用于映射多尺度复杂网络

Variable Markov dynamics as a multi-focal lens to map multi-scale complex networks

论文作者

Edler, Daniel, Smiljanić, Jelena, Holmgren, Anton, Antonelli, Alexandre, Rosvall, Martin

论文摘要

从道路网络上的交通流量到大脑网络中的电信号,许多现实世界网络都包含不同尺寸和密度的模块化结构。在由于节点之间与具有相似动力学功能的节点之间耦合而出现模块化结构的网络中,我们可以使用基于流动的社区检测方法来识别它们。但是,这些方法隐含地假设社区是密集的或类似集团的,由于一步动力学固有的视野限制,可能会损坏稀疏的社区。在较短或更长时间的马尔可夫时间中采取多个步骤,使我们能够有效地放大或缩小以捕获小型或远程社区。但是,缩放以避免视野限制以引入或增加较低的分辨率限制为代价。在这里,我们放宽了马尔可夫时间约束,并引入可变的马尔可夫动力学作为多焦点镜头,以捕获具有较高量表范围的网络中的功能社区。随着Markov时间的变化,随机步行者可以在密集区域保持一步动态,以避免分辨率限制并在稀疏区域中移动更快,以检测远程模块化结构并防止视野限制。我们使用称为地图方程的基于流的社区检测方法分析可变Markov时间的性能。我们已经在搜索算法输入中使用可变的Markov时间实现了地图方程,而没有任何复杂性开销,并测试了其在不同域中的合成和现实世界网络上的性能。结果表明,它的表现优于具有约束结构和局部稀疏区域的网络中的标准地图方程。另外,该方法估计了最佳Markov时间并避免参数调整。

From traffic flows on road networks to electrical signals in brain networks, many real-world networks contain modular structures of different sizes and densities. In the networks where modular structures emerge due to coupling between nodes with similar dynamical functions, we can identify them using flow-based community detection methods. However, these methods implicitly assume that communities are dense or clique-like which can shatter sparse communities due to a field-of-view limit inherent in one-step dynamics. Taking multiple steps with shorter or longer Markov time enables us to effectively zoom in or out to capture small or long-range communities. However, zooming out to avoid the field-of-view limit comes at the expense of introducing or increasing a lower resolution limit. Here we relax the constant Markov time constraint and introduce variable Markov dynamics as a multi-focal lens to capture functional communities in networks with a higher range of scales. With variable Markov time, a random walker can keep one-step dynamics in dense areas to avoid the resolution limit and move faster in sparse areas to detect long-range modular structures and prevent the field-of-view limit. We analyze the performance of variable Markov time using the flow-based community detection method called the map equation. We have implemented the map equation with variable Markov time in the search algorithm Infomap without any complexity overhead and tested its performance on synthetic and real-world networks from different domains. Results show that it outperforms the standard map equation in networks with constrained structures and locally sparse regions. In addition, the method estimates the optimal Markov time and avoids parameter tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源