论文标题
4D n = 2超符号字段理论的扩展运算符的顶点代数
Vertex algebra of extended operators in 4d N=2 superconformal field theories
论文作者
论文摘要
我们在一对4D n = 2 scfts的扭曲的Schur增压组的共同体中构建了一类扩展运算符。扩展的运营商是由本地运营商(Schur运营商)通过拓扑下降的。它们是Schur操作员某些超级后代的线,表面和域壁世界体积积分。他们的世界量沿横向到Minkowski时空的空间平面的方向延伸。作为这些扭曲的Schur增压的共同体的运营商,它们的相关因子(在本地)仅在与此平面相交的位置的位置。这意味着扩展的操作员扩大了Schur操作员的顶点操作员代数。我们通过计算其子代数内的一些扩展运行器产品扩展来说明这种扩大的顶点代数,以用于自由的超杀伤力SCFT。
We construct a class of extended operators in the cohomology of a pair of twisted Schur supercharges of 4d N=2 SCFTs. The extended operators are constructed from the local operators in this cohomology -- the Schur operators -- by a version of topological descent. They are line, surface, and domain wall world volume integrals of certain super descendants of Schur operators. Their world volumes extend in directions transverse to a spatial plane in Minkowski space-time. As operators in the cohomology of these twisted Schur supercharges, their correlators are (locally) meromorphic functions only of the positions where they intersect this plane. This implies the extended operators enlarge the vertex operator algebra of the Schur operators. We illustrate this enlarged vertex algebra by computing some extended-operator product expansions within a subalgebra of it for the free hypermultiplet SCFT.