论文标题

所有电磁散射体都是基质值振荡器

All electromagnetic scattering bodies are matrix-valued oscillators

论文作者

Zhang, Lang, Monticone, Francesco, Miller, Owen D.

论文摘要

在本文中,我们介绍了有关电磁散射的新观点。调整光谱电磁反应的基础是从传感到能量转化的重要应用,并以非热物理学的新想法蓬勃发展。存在出色的理论工具来建模此类响应,尤其是耦合模式理论和准模式扩展。然而,这些方法几乎没有洞悉宽带光与任何可设计的纳米光模式相互作用时可能可能发生的外部限制。我们表明,特殊的散射矩阵“ $ \ mathbb {t} $”矩阵始终可以分解为一组虚拟的drude- lorentz-lorentz振荡器,具有矩阵值(空间非局限性)系数。对于任何应用程序和任何散射器,唯一可设计的自由度是这些矩阵系数,这意味着对以前“隐藏”的线形和响应函数的强大约束。为了证明这种方法的力量,我们将其应用于近场辐射传热,在最著名的设计和理论限制之间存在长期存在的差距到最大能量交换。我们的新框架确定了非常接近当前最新的上限,并解释了为什么非常规的等离子材料应优于常规的等离子材料。更普遍地,这种方法可以无缝应用于跨纳米光子学的高息应用(包括用于元图,成像和光伏电源),并且可以推广到在声学和/或量子散射理论中出现的独特挑战。

In this article, we introduce a new viewpoint on electromagnetic scattering. Tailoring spectral electromagnetic response underpins important applications ranging from sensing to energy conversion, and is flourishing with new ideas from non-Hermitian physics. There exist excellent theoretical tools for modeling such responses, particularly coupled-mode theories and quasinormal-mode expansions. Yet these approaches offer little insight into the outer limits of what is possible when broadband light interacts with any designable nanophotonic pattern. We show that a special scattering matrix, the "$\mathbb{T}$" matrix, can always be decomposed into a set of fictitious Drude--Lorentz oscillators with matrix-valued (spatially nonlocal) coefficients. For any application and any scatterer, the only designable degrees of freedom are these matrix coefficients, implying strong constraints on lineshapes and response functions that had previously been "hidden." To demonstrate the power of this approach, we apply it to near-field radiative heat transfer, where there has been a long-standing gap between the best known designs and theoretical limits to maximum energy exchange. Our new framework identifies upper bounds that come quite close to the current state-of-the-art, and explains why unconventional plasmonic materials should be superior to conventional plasmonic materials. More generally, this approach can be seamlessly applied to high-interest applications across nanophotonics -- including for metasurfaces, imaging, and photovoltaics -- and may be generalizable to unique challenges that arise in acoustic and/or quantum scattering theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源