论文标题

银河系模拟中的超新星反馈的热运动亚电网模型

A thermal-kinetic subgrid model for supernova feedback in simulations of galaxy formation

论文作者

Chaikin, Evgenii, Schaye, Joop, Schaller, Matthieu, Benítez-Llambay, Alejandro, Nobels, Folkert S. J., Ploeckinger, Sylvia

论文摘要

我们提出了用于超新星反馈的亚网格模型,该模型设计用于宇宙学的宇宙学模拟,该模拟可能包括冷星际培养基(ISM)。该模型使用能量注入的热和动力学通道,这些通道分别建立在猫头鹰和鹰模拟中使用的恒星反馈的随机动力学和热模型上。在热通道中,能量在统计上分布在各向同性上,每次事件大量随机注入,这将伪造的辐射能量损失最小化。在动力学通道中,我们通过将气体颗粒成对朝相反的方向踢,将能量注入小部分。动力学反馈的实施旨在保护能量,线性和角动量,并且在统计学上是各向同性的。为了测试模型,我们运行了孤立的银河系和矮星系的模拟,其中使气体被允许冷却至10K。使用热和动力学通道一起,我们获得了平滑的星形形成历史和强大的银河系风,具有逼真的质量载荷因子。此外,该模型会产生与观测值一致的空间分辨的星形形成率(SFR)和速度分散。我们通过几个数量级来改变数值分辨率,并发现全局SFR和风质量负载的出色收敛性。我们表明,大型热能注射会产生ISM的热相,并通过从盘中弹出气体来调节恒星的形成,而低能踢脚踢增加了中性ISM中的湍流速度散布,这又有助于抑制恒星的形成。

We present a subgrid model for supernova feedback designed for cosmological simulations of galaxy formation that may include a cold interstellar medium (ISM). The model uses thermal and kinetic channels of energy injection, which are built upon the stochastic kinetic and thermal models for stellar feedback used in the OWLS and EAGLE simulations, respectively. In the thermal channel, the energy is distributed statistically isotropically and injected stochastically in large amounts per event, which minimizes spurious radiative energy losses. In the kinetic channel, we inject the energy in small portions by kicking gas particles in pairs in opposite directions. The implementation of kinetic feedback is designed to conserve energy, linear and angular momentum, and is statistically isotropic. To test the model, we run simulations of isolated Milky Way-mass and dwarf galaxies, in which the gas is allowed to cool down to 10 K. Using the thermal and kinetic channels together, we obtain smooth star formation histories and powerful galactic winds with realistic mass loading factors. Furthermore, the model produces spatially resolved star formation rates (SFRs) and velocity dispersions that are in agreement with observations. We vary the numerical resolution by several orders of magnitude and find excellent convergence of the global SFRs and wind mass loading. We show that large thermal-energy injections generate a hot phase of the ISM and modulate the star formation by ejecting gas from the disc, while the low-energy kicks increase the turbulent velocity dispersion in the neutral ISM, which in turn helps suppress star formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源