论文标题

无跟踪的徒手超声检查,序列建模和辅助转换过去和将来的框架

Trackerless freehand ultrasound with sequence modelling and auxiliary transformation over past and future frames

论文作者

Li, Qi, Shen, Ziyi, Li, Qian, Barratt, Dean C, Dowrick, Thomas, Clarkson, Matthew J, Vercauteren, Tom, Hu, Yipeng

论文摘要

在许多临床应用中,没有跟踪器的三维(3D)徒手超声(US)重建在其二维或跟踪的对应物上可能是有利的。在本文中,我们建议使用前馈和复发的神经网络(RNN)估算从过去和将来的2D图像之间的3D空间转换。使用时间可用的帧,提出了进一步的多任务学习算法来利用它们之间的大量辅助变换预测任务。在一项志愿者的研究中,使用从228次扫描中获得的40,000多个美国框架在38名志愿者的前臂上获得,通过帧预测准确性,体积重建重叠,累积跟踪错误和最终漂移,基于光学跟踪器的地面真实。结果表明,建模时间空间相关的输入帧以及输出转换的重要性,由于额外的过去和/或将来的框架,进一步改进。最佳性能模型与预测中等间隔帧之间的转换有关,间隔为10帧,每秒20帧(FPS)。通过在基于LSTM的RNN的情况下,距预测转换不超过一秒钟,几乎没有观察到的好处。有趣的是,通过拟议的方法,不再需要在序列损失的内部损失,从而鼓励不再需要在构成转换或最小化累积错误方面保持一致性。实施代码和志愿者数据将公开可用,以确保可重复性和进一步研究。

Three-dimensional (3D) freehand ultrasound (US) reconstruction without a tracker can be advantageous over its two-dimensional or tracked counterparts in many clinical applications. In this paper, we propose to estimate 3D spatial transformation between US frames from both past and future 2D images, using feed-forward and recurrent neural networks (RNNs). With the temporally available frames, a further multi-task learning algorithm is proposed to utilise a large number of auxiliary transformation-predicting tasks between them. Using more than 40,000 US frames acquired from 228 scans on 38 forearms of 19 volunteers in a volunteer study, the hold-out test performance is quantified by frame prediction accuracy, volume reconstruction overlap, accumulated tracking error and final drift, based on ground-truth from an optical tracker. The results show the importance of modelling the temporal-spatially correlated input frames as well as output transformations, with further improvement owing to additional past and/or future frames. The best performing model was associated with predicting transformation between moderately-spaced frames, with an interval of less than ten frames at 20 frames per second (fps). Little benefit was observed by adding frames more than one second away from the predicted transformation, with or without LSTM-based RNNs. Interestingly, with the proposed approach, explicit within-sequence loss that encourages consistency in composing transformations or minimises accumulated error may no longer be required. The implementation code and volunteer data will be made publicly available ensuring reproducibility and further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源