论文标题
热量单点功能和广告中的响应函数的各个方面黑洞
Aspects of thermal one-point functions and response functions in AdS Black holes
论文作者
论文摘要
我们重新审视分析计算平面广告中标量字段的一个点函数的问题,该函数是由Weyl Squared Tensor来源的。我们使用Frobenius的方法在边界周围的功率序列扩展方面分析了问题。正如格林伯格和马尔达纳(Maldacena)先前所说的那样,我们在操作员混合方面阐明了最终答案的极点结构。我们概括了这些技术,还可以获得对在波矢量中的第一个非平凡序列缓慢调制的空间变化来源的分析结果,以进行任意维度。我们还研究了一阶校正对整体广告在大质量处的一个点函数,在该质量上,我们以与地平线曲率相对应的术语扰动。
We revisit the problem of analytically computing the one point functions for scalar fields in planar AdS black holes of arbitrary dimension, which are sourced by the Weyl squared tensor. We analyze the problem in terms of power series expansions around the boundary using the method of Frobenius. We clarify the pole structure of the final answer in terms of operator mixing, as argued previously by Grinberg and Maldacena. We generalize the techniques to also obtain analytic results for slowly modulated spatially varying sources to first non-trivial order in the wave vector for arbitrary dimension. We also study the first order corrections to the one point function of the global AdS black hole at large mass, where we perturb in terms that correspond to the curvature of the horizon.