论文标题
VISE:基于视觉的3D在线形状估计连续变形机器人
ViSE: Vision-Based 3D Online Shape Estimation of Continuously Deformable Robots
论文作者
论文摘要
软机器人的精确控制需要了解其形状。与经典的刚性机器人相比,这些机器人的形状具有无限的自由度。为了部分重建形状,本体感受技术使用内置传感器,导致结果不准确并增加了制造复杂性。到目前为止,外观感受的方法依赖于将反射标记放在所有跟踪的组件上,并使用多个运动跟踪摄像机将其位置放置。跟踪系统昂贵,并且由于标记闭塞和损坏而与环境相互作用的可变形机器人不可行。在这里,我们提出了使用卷积神经网络进行3D形状估计的回归方法。所提出的方法利用了数据驱动的监督学习,并且能够在推理过程中进行实时无标记的形状估计。从两个不同的角度,在25 Hz同时拍摄了两个机器人系统的图像,并将其馈送到网络,该网络返回每对参数化形状。所提出的方法的表现优于无标记的最新方法的估计准确性最高4.4%,同时更强大,不需要对形状的先验知识。该方法可以轻松实现,因为仅需要两个彩色摄像机而没有深度,并且不需要对外部参数进行明确的校准。对两种软机器人臂和软机器人鱼类的评估证明了我们的方法对高度可变形的系统的精度和多功能性。该方法对不同场景修改(摄像机的对齐和亮度)的强大性能表明,其对更广泛的实验设置的推广性将使下游任务有益于机器人抓握和操纵等下游任务。
The precise control of soft and continuum robots requires knowledge of their shape. The shape of these robots has, in contrast to classical rigid robots, infinite degrees of freedom. To partially reconstruct the shape, proprioceptive techniques use built-in sensors resulting in inaccurate results and increased fabrication complexity. Exteroceptive methods so far rely on placing reflective markers on all tracked components and triangulating their position using multiple motion-tracking cameras. Tracking systems are expensive and infeasible for deformable robots interacting with the environment due to marker occlusion and damage. Here, we present a regression approach for 3D shape estimation using a convolutional neural network. The proposed approach takes advantage of data-driven supervised learning and is capable of real-time marker-less shape estimation during inference. Two images of a robotic system are taken simultaneously at 25 Hz from two different perspectives, and are fed to the network, which returns for each pair the parameterized shape. The proposed approach outperforms marker-less state-of-the-art methods by a maximum of 4.4% in estimation accuracy while at the same time being more robust and requiring no prior knowledge of the shape. The approach can be easily implemented due to only requiring two color cameras without depth and not needing an explicit calibration of the extrinsic parameters. Evaluations on two types of soft robotic arms and a soft robotic fish demonstrate our method's accuracy and versatility on highly deformable systems in real-time. The robust performance of the approach against different scene modifications (camera alignment and brightness) suggests its generalizability to a wider range of experimental setups, which will benefit downstream tasks such as robotic grasping and manipulation.