论文标题

gapartnet:跨类别域,可通过可概括的零件操纵的可替代对象感知和操纵

GAPartNet: Cross-Category Domain-Generalizable Object Perception and Manipulation via Generalizable and Actionable Parts

论文作者

Geng, Haoran, Xu, Helin, Zhao, Chengyang, Xu, Chao, Yi, Li, Huang, Siyuan, Wang, He

论文摘要

多年来,研究人员一直致力于概括的对象感知和操纵,在这些物体的感知和操纵中,跨类别的普遍性是高度期望但尚未得到充实的。在这项工作中,我们建议通过可推广且可操作的零件(Gaparts)学习此类跨类别技能。通过在27个对象类别中识别和定义9个GAPART类(盖,手柄等),我们构建了一个以零件为中心的零件交互式数据集Gapartnet,我们在其中为1,166个对象提供了8,489个零件实例。基于Gapartnet,我们研究了三个跨类别任务:部分分割,零件姿势估计和基于零件的对象操作。鉴于可见对象类别和看不见的对象类别之间存在显着的域差距,我们通过整合对抗性学习技术的角度提出了一种健壮的3D分割方法。无论在看到或看不见的类别上,我们的方法都超过了所有现有方法。此外,通过部分细分和姿势估计结果,我们利用Gapart姿势定义来设计基于零件的操作启发式方法,这些启发式方法可以很好地推广到模拟器和现实世界中的对象类别。我们的数据集,代码和演示可在我们的项目页面上找到。

For years, researchers have been devoted to generalizable object perception and manipulation, where cross-category generalizability is highly desired yet underexplored. In this work, we propose to learn such cross-category skills via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (lids, handles, etc.) in 27 object categories, we construct a large-scale part-centric interactive dataset, GAPartNet, where we provide rich, part-level annotations (semantics, poses) for 8,489 part instances on 1,166 objects. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the significant domain gaps between seen and unseen object categories, we propose a robust 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both the simulator and the real world. Our dataset, code, and demos are available on our project page.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源