论文标题
稀有:数据中心的可再生能源知识资源管理
RARE: Renewable Energy Aware Resource Management in Datacenters
论文作者
论文摘要
对数字服务需求的指数增长推动了大量数据中心能源消耗和负面的环境影响。促进可持续的解决方案以压迫能源和数字基础设施挑战至关重要。几个Hyperscale云提供商宣布了使用可再生能源为其数据中心推动其数据中心的计划。但是,将可再生能源集成为数据中心为数据中心提供挑战,因为发电是间歇性的,需要采用解决电源可变性的方法。在这种复杂的动态绿色数据中心环境中,基于特定于启发式的启发式启发式的调度程序是耗时,昂贵的,并且需要域专家进行广泛的调整。绿色数据中心需要智能系统和系统软件来通过智能调整计算来使用可再生能源生成来采用多种可再生能源(风能和太阳能)。我们提出了罕见的(可再生能源意识资源管理),这是一种深入的加强学习(DRL)工作调度程序,该计划会自动学习有效的工作调度策略,同时不断适应数据中心的复杂动态环境。由此产生的DRL调度程序的性能要比具有不同工作负载的启发式调度策略更好,并适应了可再生能源的间歇性电源。我们演示了DRL调度程序系统设计参数,并在正确调整后会产生更好的性能。最后,我们证明DRL调度程序可以使用离线学习来学习并改善现有的启发式政策。
The exponential growth in demand for digital services drives massive datacenter energy consumption and negative environmental impacts. Promoting sustainable solutions to pressing energy and digital infrastructure challenges is crucial. Several hyperscale cloud providers have announced plans to power their datacenters using renewable energy. However, integrating renewables to power the datacenters is challenging because the power generation is intermittent, necessitating approaches to tackle power supply variability. Hand engineering domain-specific heuristics-based schedulers to meet specific objective functions in such complex dynamic green datacenter environments is time-consuming, expensive, and requires extensive tuning by domain experts. The green datacenters need smart systems and system software to employ multiple renewable energy sources (wind and solar) by intelligently adapting computing to renewable energy generation. We present RARE (Renewable energy Aware REsource management), a Deep Reinforcement Learning (DRL) job scheduler that automatically learns effective job scheduling policies while continually adapting to datacenters' complex dynamic environment. The resulting DRL scheduler performs better than heuristic scheduling policies with different workloads and adapts to the intermittent power supply from renewables. We demonstrate DRL scheduler system design parameters that, when tuned correctly, produce better performance. Finally, we demonstrate that the DRL scheduler can learn from and improve upon existing heuristic policies using Offline Learning.