论文标题
关于二次正交双向曲率的评论
Remarks on the Quadratic Orthogonal Bisectional Curvature
论文作者
论文摘要
我们在二次正交双弯曲曲率,组合和距离几何形状之间表现出奇怪的联系。 weitzenböck曲率运算符,作用于真实的(1,1) - 形式,被实现为有限图的dirichlet能量,由曲率矩阵加权。这些结果还阐明了二次正交双弯曲曲率和真实的双向曲率的性质差异。
We exhibit a curious link between the Quadratic Orthogonal Bisectional Curvature, combinatorics, and distance geometry. The Weitzenböck curvature operator, acting on real (1,1)--forms, is realized as the Dirichlet energy of a finite graph, weighted by a matrix of the curvature. These results also illuminate the difference in the nature of the Quadratic Orthogonal Bisectional Curvature and the Real Bisectional Curvature.