论文标题
$ a_0(980)$ - MESON TWIST-2分发幅度在QCD SUM规则和调查$ d \ to a_0(980)(\toηπ)e^+ν_e$中
$a_0(980)$-meson twist-2 distribution amplitude within the QCD sum rules and investigation of $D \to a_0(980) (\toηπ) e^+ν_e$
论文作者
论文摘要
在本文中,通过在背景字段理论中使用QCD总规则方法,深入研究了$ A_0(980)$ - Meson Twist-2 Light-Cone分布幅度的矩。最多9级准确性,我们在初始比例$ \langleξ_{2; a_0}^n \ rangle | _ {μ_0} $处于初始比例$μ_0= 1〜 {\ rm gev} $,即-0.307(43)$,$ \langleξ^3_ {2; a_0} \ rangle | _ {μ_0} = -0.181(34)$,$ \langleξ^5_ {2; a_0}; a_0} \ a_0} \ rangle | _ { $ \langleξ^7_ {2; a_0} \ rangle | _ {μ_0} = -0.049(26)$,$ \langleξ^9_ {2; a_0} \ a_0} \ rangle | _ {μ_0} = -0.036(24)$。 An improved light-cone harmonic oscillator model for $a_0(980)$-meson twist-2 light-cone distribution amplitudes is adopted, where its parameters are fixed by using the least squares method based on the $\langleξ_{2;a_0}^n\rangle|_{μ_0}$, and their goodness of fit reach to $95.4\%$.然后,我们将$ d \计算为a_0(980)$过渡形式在轻单和规则方法中,在最大的后坐力点,我们获得了$ f _+^{d \ to a_0}(0)= 1.058^{+0.058^{+0.068} _ 0.764^{+0.044} _ { - 0.036} $。作为进一步的应用程序,给出了$ d \ to a_0(980)\ ell \barν_\ ell $ emmeptonic衰变的分支分数。考虑考虑衰减$ a_0(980)\ toηπ$,我们获得$ {\ cal b}(d^0 \ to a_0(980)^ - (\ toηπ^ - )e^+ν_e) b}(d^+\ to a_0(980)^0(\toηπ^0)e^+ν_e)=(1.675^{+0.272} _ { - 0.169})\ times10^{ - 4} $,与besiii Collector and Collector and Collector and Collector和PDG DATA OURS ORRORS一致。最后,我们介绍了前回向不对称的角度可观察到的角度,$ q^2 $ - 差异的扁平术语和半衰减衰减的Lepton极化不对称$ d \ to a_0(980)\ ell \ ell \ ell \barν_\ ell $。
In this paper, moments of $a_0(980)$-meson twist-2 light-cone distribution amplitudes were deeply researched by using QCD sum rules approach within background field theory. Up to 9th-order accuracy, we present $\langleξ_{2;a_0}^n\rangle|_{μ_0}$ at the initial scale $μ_0 = 1~{\rm GeV}$, i.e. $\langleξ^1_{2;a_0}\rangle|_{μ_0} = -0.307(43)$, $\langleξ^3_{2;a_0}\rangle|_{μ_0} = -0.181(34)$, $\langleξ^5_{2;a_0}\rangle|_{μ_0} = -0.078(28)$, $\langleξ^7_{2;a_0}\rangle|_{μ_0} = -0.049(26)$, $\langleξ^9_{2;a_0}\rangle|_{μ_0} = -0.036(24)$, respectively. An improved light-cone harmonic oscillator model for $a_0(980)$-meson twist-2 light-cone distribution amplitudes is adopted, where its parameters are fixed by using the least squares method based on the $\langleξ_{2;a_0}^n\rangle|_{μ_0}$, and their goodness of fit reach to $95.4\%$. Then, we calculate the $D\to a_0(980)$ transition form factors within the light-cone sum rules approach, and at largest recoil point, we obtain $f_+^{D\to a_0}(0) = 1.058^{+0.068}_{-0.035}$ and $f_-^{D\to a_0}(0) = 0.764^{+0.044}_{-0.036}$. As a further application, the branching fractions of the $D\to a_0(980)\ell\barν_\ell$ semileptonic decays are given. Taking the decay $a_0(980)\to ηπ$ into consideration, we obtain ${\cal B}(D^0 \to a_0(980)^- (\to ηπ^-) e^+ν_e) =(1.330^{+0.216}_{-0.134})\times10^{-4}$, ${\cal B}(D^+\to a_0(980)^0(\to ηπ^0)e^+ν_e)=(1.675^{+0.272}_{-0.169})\times10^{-4}$, which are consistent with the BESIII collaboration and PDG data within errors. Finally, we present the angle observables of forward-backward asymmetries, $q^2$-differential flat terms and lepton polarization asymmetry of the semileptonic decay $D\to a_0(980)\ell\barν_\ell$.