论文标题

罕见的野生动植物认可,并自制代表学习

Rare Wildlife Recognition with Self-Supervised Representation Learning

论文作者

Zheng, Xiaochen

论文摘要

具有空中图像的自动化动物普查是野生动植物保护的重要成分。最近的模型通常基于监督学习,因此需要大量的培训数据。由于它们的稀缺性和微小的大小,在空中图像中注释动物是一个非常繁琐的过程。在该项目中,我们提出了一种方法,可通过诉诸于自制训练预处理,以减少所需的培训数据。详细说明,我们研究了最近的对比学习方法(例如动量对比度(MOCO)和跨级实例组歧视(CLD))的组合,以在无需标签的情况下将模型调节在空中图像上。我们表明,Moco,CLD和几何增强的组合优于在图像网上预先介绍的传统模型,较大的边缘。同时,已证明在监督学习中平滑标签或预测分布的策略已被证明可用于防止模型过度拟合。我们将自我保护的对比模型与图像混合策略相结合,发现它可用于学习更强大的视觉表示。至关重要的是,即使我们将训练动物的数量减少到10%,我们的方法仍然会产生优惠的结果,这时我们的最佳模型得分以相似的精度将基线的召回率翻了一番。这有效地允许将所需注释的数量减少到分数,同时仍然能够在如此挑战性的设置中训练高临界模型。

Automated animal censuses with aerial imagery are a vital ingredient towards wildlife conservation. Recent models are generally based on supervised learning and thus require vast amounts of training data. Due to their scarcity and minuscule size, annotating animals in aerial imagery is a highly tedious process. In this project, we present a methodology to reduce the amount of required training data by resorting to self-supervised pretraining. In detail, we examine a combination of recent contrastive learning methodologies like Momentum Contrast (MoCo) and Cross-Level Instance-Group Discrimination (CLD) to condition our model on the aerial images without the requirement for labels. We show that a combination of MoCo, CLD, and geometric augmentations outperforms conventional models pretrained on ImageNet by a large margin. Meanwhile, strategies for smoothing label or prediction distribution in supervised learning have been proven useful in preventing the model from overfitting. We combine the self-supervised contrastive models with image mixup strategies and find that it is useful for learning more robust visual representations. Crucially, our methods still yield favorable results even if we reduce the number of training animals to just 10%, at which point our best model scores double the recall of the baseline at similar precision. This effectively allows reducing the number of required annotations to a fraction while still being able to train high-accuracy models in such highly challenging settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源