论文标题
用于回归的半监督自动编码器:在软传感器上应用
Semi-supervised Variational Autoencoder for Regression: Application on Soft Sensors
论文作者
论文摘要
我们介绍了使用变分自动编码器(VAE)的半监督回归方法的开发,该方法可用于软感应应用。考虑到过程质量变量未与其他过程变量相同的频率收集的事实,我们激励使用半监督学习的学习。这些未标记的记录不可能基于有监督的学习方法来用于培训质量变量预测。将VAE用于无监督的学习已建立,最近它们用于基于变异推理程序的回归应用。我们扩展了这种监督VAE回归(SVAER)的方法,以使其从无标记的数据中学习,导致半监督的VAE进行回归(SSVAER),然后我们使用其他正则化组件对其体系结构进行进一步修改,以使SSVAER适合于两个标记和未标记的BABELLED BABELLED CRECED GRODECT。由变异方法产生的概率回归器使得可以同时估计预测的方差,从而提供了不确定性定量以及生成的预测。我们使用固定尺寸的数据集对SSVAER提供了SSVAER的广泛比较研究,并在两个基准问题上进行了两种基准问题,在其中我们改变了可用于培训的标记数据的百分比。在这些实验中,与其他第二好的测试误差相比,SSVAER在20例研究中的11例中达到了最低的测试误差。
We present the development of a semi-supervised regression method using variational autoencoders (VAE), which is customized for use in soft sensing applications. We motivate the use of semi-supervised learning considering the fact that process quality variables are not collected at the same frequency as other process variables leading to many unlabelled records in operational datasets. These unlabelled records are not possible to use for training quality variable predictions based on supervised learning methods. Use of VAEs for unsupervised learning is well established and recently they were used for regression applications based on variational inference procedures. We extend this approach of supervised VAEs for regression (SVAER) to make it learn from unlabelled data leading to semi-supervised VAEs for regression (SSVAER), then we make further modifications to their architecture using additional regularization components to make SSVAER well suited for learning from both labelled and unlabelled process data. The probabilistic regressor resulting from the variational approach makes it possible to estimate the variance of the predictions simultaneously, which provides an uncertainty quantification along with the generated predictions. We provide an extensive comparative study of SSVAER with other publicly available semi-supervised and supervised learning methods on two benchmark problems using fixed-size datasets, where we vary the percentage of labelled data available for training. In these experiments, SSVAER achieves the lowest test errors in 11 of the 20 studied cases, compared to other methods where the second best gets 4 lowest test errors out of the 20.