论文标题
GE-76中微子双β衰减搜索的多电极高纯锗检测器的可行性研究
A feasibility study of multi-electrode high-purity germanium detector for Ge-76 neutrinoless double beta decay searching
论文作者
论文摘要
使用高纯晶也(HPGE)探测器在很大程度上依赖于背景抑制技术来增强其敏感性的实验,以搜索76GE中性中性s(0ν\ b {eta} \ b {eta})衰变的实验。在这项工作中,我们提出了一种基于神经网络(NN)和光梯度增强机(LightGBM; LGB)的脉冲分析方法,以区分单电子(背景)和双电(0ν\ b {eta} \ b {eta} \ b {eta}信号)事件。在本文中,我们描述了一个多电极HPGE检测器系统,数据处理系统和脉冲模拟过程。我们构建了完全连接的(FC)神经网络和一个LGB模型,以对单电子事件和双电子事件进行分类。 FC网络通过模拟的单电子和双电子诱导的脉冲进行训练,并在由脉冲形状仿真生成的独立数据集中进行了测试。 FC神经网络在0ν\ b {eta} \ b {eta}双电子事件信号的测试集中的歧视效率为77.4%,精度为57.7%,训练时间为430 min。 LGB模型的歧视效率为73.1%,精度为64.0%,训练时间为1.5分钟。这项研究表明,使用FC神经网络和LGB模型在多电极HPGE检测器上实现单电子和双电子歧视是可行的。这些结果可以用作未来76GE0ν\ b {eta} \ b {eta}实验的参考。
Experiments to search for neutrinoless double-beta (0ν\b{eta}\b{eta}) decay of 76Ge using a high-purity germanium (HPGe) detector rely heavily on background suppression technologies to enhance their sensitivities. In this work, we proposed a pulse-shape analysis method based on a neural network (NN) and a light gradient boosting machine (lightGBM; LGB) to discriminate single-electron (background) and double-electrons (0ν\b{eta}\b{eta} signal) events in a multi-electrode HPGe detector. In this paper, we describe a multi-electrode HPGe detector system, a data-processing system, and pulse-shape simulation procedures. We built a fully connected (FC) neural network and an LGB model to classify the single- and double-electron events. The FC network is trained with simulated single- and double-electron-induced pulses and tested in an independent dataset generated by the pulse-shape simulation. The discrimination efficiency of the FC neural network in the test set for the 0ν\b{eta}\b{eta} double-electron events signal was 77.4%, the precision was 57.7%, and the training time was 430 min. The discrimination efficiency of LGB model was 73.1%, the precision was 64.0%, and the training time was 1.5 min. This study demonstrated that it is feasible to realize single- and double-electron discrimination on multi-electrode HPGe detectors using an FC neural network and LGB model. These results can be used as a reference for future 76Ge 0ν\b{eta}\b{eta} experiments.