论文标题

非线性系统的线性故障估计器:超本地模型设计

Linear Fault Estimators for Nonlinear Systems: An Ultra-Local Model Design

论文作者

Ghanipoor, Farhad, Murguia, Carlos, Esfahani, Peyman Mohajerin, van de Wouw, Nathan

论文摘要

本文解决了非线性系统的鲁棒过程和传感器故障重建问题。所提出的方法通过使用已知非线性和未知故障的组合贡献的近似内部线性模型来增强系统动力学,从而导致增强状态下的线性模型近似。我们利用超本地模型的广泛建模能力来表征这种内部动力学。我们使用线性过滤器来重建增强状态(同时估计原始系统的状态以及非线性和故障的总和)。拥有此组合估计值,我们可以简单地从相应估计值的非线性中减去非线性的分析表达,以重建断层矢量。由于非线性在滤波器动力学中不发挥作用(仅用作静态非线性输出以估计故障),因此我们可以避免使用标准的限制性假设,例如全球(单面)Lipschitz非线性和/或Lipschitz常数需要进行滤波器设计。滤波器合成作为混合的H2/HINF优化问题,其中干扰和模型不匹配的效果在HINF的意义上最小化,对于测量噪声而言,H2的可接受性能可接受。

This paper addresses the problem of robust process and sensor fault reconstruction for nonlinear systems. The proposed method augments the system dynamics with an approximated internal linear model of the combined contribution of known nonlinearities and unknown faults -- leading to an approximated linear model in the augmented state. We exploit the broad modeling power of ultra-local models to characterize this internal dynamics. We use a linear filter to reconstruct the augmented state (simultaneously estimating the state of the original system and the sum of nonlinearities and faults). Having this combined estimate, we can simply subtract the analytic expression of nonlinearities from that of the corresponding estimate to reconstruct the fault vector. Because the nonlinearity does not play a role in the filter dynamics (it is only used as a static nonlinear output to estimate the fault), we can avoid standard restrictive assumptions like globally (one-sided) Lipschitz nonlinearities and/or the need for Lipschitz constants to carry out the filter design. The filter synthesis is posed as a mixed H2/Hinf optimization problem where the effect of disturbances and model mismatches is minimized in the Hinf sense, for an acceptable H2 performance with respect to measurement noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源