论文标题

商业智能和数据驱动的根本原因分析的管道分类数据

A Pipeline for Business Intelligence and Data-Driven Root Cause Analysis on Categorical Data

论文作者

Thakar, Shubham, Kalbande, Dhananjay

论文摘要

商业智能(BI)是从现有数据中得出的任何知识,可以在企业中策略性地应用。数据挖掘是一种使用统计数据建模从数据中提取BI的技术或方法。找到已收集的各种数据项之间的关系或相关性可以用于提高业务绩效,或者至少更好地理解正在发生的事情。根本原因分析(RCA)正在发现问题或事件的根本原因以识别适当的解决方案。 RCA可以显示为什么发生事件,这可以帮助避免将来发生问题。本文提出了一种新的聚类 +关联规则挖掘管道,以从数据中获得业务洞察力。该管道的结果是协会规则的形式,其结果,先例和各种指标以评估这些规则。该管道的结果可以帮助锚定重要的业务决策,并且数据科学家也可以在更新现有模型或开发新模型时使用。任何事件的发生都由其生成规则中的先例解释。因此,此输出还可以帮助数据驱动的根本原因分析。

Business intelligence (BI) is any knowledge derived from existing data that may be strategically applied within a business. Data mining is a technique or method for extracting BI from data using statistical data modeling. Finding relationships or correlations between the various data items that have been collected can be used to boost business performance or at the very least better comprehend what is going on. Root cause analysis (RCA) is discovering the root causes of problems or events to identify appropriate solutions. RCA can show why an event occurred and this can help in avoiding occurrences of an issue in the future. This paper proposes a new clustering + association rule mining pipeline for getting business insights from data. The results of this pipeline are in the form of association rules having consequents, antecedents, and various metrics to evaluate these rules. The results of this pipeline can help in anchoring important business decisions and can also be used by data scientists for updating existing models or while developing new ones. The occurrence of any event is explained by its antecedents in the generated rules. Hence this output can also help in data-driven root cause analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源