论文标题

使用深度学习的结构性约束虚拟组织学染色,用于人类冠状动脉成像

Structural constrained virtual histology staining for human coronary imaging using deep learning

论文作者

Li, Xueshen, Liu, Hongshan, Song, Xiaoyu, Brott, Brigitta C., Litovsky, Silvio H., Gan, Yu

论文摘要

组织病理学分析对于冠状动脉疾病(CAD)的动脉表征至关重要。但是,组织学需要一个侵入性且耗时的过程。在本文中,我们建议使用光学相干断层扫描(OCT)图像生成虚拟组织学染色,以实现实时的组织学可视化。我们开发了一个深度学习网络,即冠状动脉,将冠状动脉OCT图像转移到虚拟组织学图像中。在对冠状动脉OCT图像中的结构约束方面进行了特殊考虑,我们的方法比基于GAN的常规方法实现了更好的图像生成性能。实验结果表明,冠状动脉生成类似于真实组织学图像的虚拟组织学图像,揭示了人类冠状动脉层。

Histopathological analysis is crucial in artery characterization for coronary artery disease (CAD). However, histology requires an invasive and time-consuming process. In this paper, we propose to generate virtual histology staining using Optical Coherence Tomography (OCT) images to enable real-time histological visualization. We develop a deep learning network, namely Coronary-GAN, to transfer coronary OCT images to virtual histology images. With a special consideration on the structural constraints in coronary OCT images, our method achieves better image generation performance than the conventional GAN-based method. The experimental results indicate that Coronary-GAN generates virtual histology images that are similar to real histology images, revealing the human coronary layers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源