论文标题
双曲线$ p $ - sum and Holosphical $ p $ -brunn-minkowski理论在双曲线空间中
Hyperbolic $p$-sum and Horospherical $p$-Brunn-Minkowski theory in hyperbolic space
论文作者
论文摘要
经典的Brunn-Minkowski理论通过使用Minkowski总和研究了欧几里得空间中凸形体的几何形状。 It originated from H. Brunn's thesis in 1887 and H. Minkowski's paper in 1903. Because there is no universally acknowledged definition of the sum of two sets in hyperbolic space, there has been no Brunn-Minkowski theory in hyperbolic space since 1903. In this paper, for any $p>0$ we introduce a sum of two sets in hyperbolic space, and we call it the hyperbolic $p$-sum.然后,我们通过使用双曲线$ p $ sum在双曲线空间中开发了一个布鲁恩 - 金斯基理论,我们称其为Halosphical $ p $ -brunn-minkowski理论。令$ k $为双曲线空间中的任何光滑的horospher凸界域$ \ mathbb {h}^{n+1} $。通过计算$ k $ th修改的$ k $ $ k $的QuermassIntegral的变化,我们通过使用双曲线$ p $ -sum,我们介绍了holospherical $ k $ -th $ -th $ p $ -Surface面积与$ k $相关的$ k $在单位球体上$ \ mathbb {s} s}^n $。对于$ k = 0 $,我们介绍了Halosphical $ p $ -minkowski问题,即处方的holosphical $ p $ -ssurface面积测量问题。通过设计和研究新的卷保留流,我们解决了所有$ p \ in( - \ infty,+\ infty)$的halosphical $ p $ -p $ -minkowski问题的解决方案。对于$ 1 \ leq k \ leq n-1 $,我们介绍了Halosphical $ P $ -CHRISTOFFEL-MINKOWSKI问题,即处方的Halosphical $ k $ -th $ -th $ p $ -Surface面积面积测量问题。我们解决了在给定度量的适当假设下(-n, +\ infty)$的halosphical $ p $ -CHRISTOFFEL-MINKOWSKI问题的解决方案的存在。我们还研究了双曲线空间中域的Brunn-Minkowski不平等和Minkowski的不平等现象。
The classical Brunn-Minkowski theory studies the geometry of convex bodies in Euclidean space by use of the Minkowski sum. It originated from H. Brunn's thesis in 1887 and H. Minkowski's paper in 1903. Because there is no universally acknowledged definition of the sum of two sets in hyperbolic space, there has been no Brunn-Minkowski theory in hyperbolic space since 1903. In this paper, for any $p>0$ we introduce a sum of two sets in hyperbolic space, and we call it the hyperbolic $p$-sum. Then we develop a Brunn-Minkowski theory in the hyperbolic space by use of our hyperbolic $p$-sum, and we call it the horospherical $p$-Brunn-Minkowski theory. Let $K$ be any smooth horospherically convex bounded domain in the hyperbolic space $\mathbb{H}^{n+1}$. Through calculating the variation of the $k$-th modified quermassintegral of $K$ by use of our hyperbolic $p$-sum, we introduce the horospherical $k$-th $p$-surface area measure associated with $K$ on the unit sphere $\mathbb{S}^n$. For $k=0$, we introduce the horospherical $p$-Minkowski problem, which is the prescribed horospherical $p$-surface area measure problem. Through designing and studying a new volume preserving flow, we solve the existence of solutions to the horospherical $p$-Minkowski problem for all $p \in (-\infty,+\infty)$ when the given measure is even. For $1 \leq k \leq n-1$, we introduce the horospherical $p$-Christoffel-Minkowski problem, which is the prescribed horospherical $k$-th $p$-surface area measure problem. We solve the existence of solutions to the horospherical $p$-Christoffel-Minkowski problem for $p\in(-n, +\infty)$ under appropriate assumption on the given measure. We also study the Brunn-Minkowski inequalities and the Minkowski inequalities for domains in the hyperbolic space.