论文标题
$ \ ell_p $ -subspace素描问题在带有支持矢量机的应用程序中
The $\ell_p$-Subspace Sketch Problem in Small Dimensions with Applications to Support Vector Machines
论文作者
论文摘要
在$ \ ell_p $ -subspace草图问题中,我们得到了带有$ n> d $的$ n \ times d $矩阵$ a $,并要求构建一个较小的存储数据结构$ q(a,ε)$,这样,对于任何查询vector $ x \ in \ in \ in \ mathbb {r}^d $,我们就可以输出A $(我们可以输出A $(1 \ pmpmpmpmpmpmpmpmpmpmpm) $ q(a,ε)$。已知此问题需要$ \tildeΩ(dε^{ - 2})$ d =ω(\ log(1/ε))$的内存位。但是,对于$ d = o(\ log(1/ε))$,尚无数据结构的下限。 我们解决了解决任何常数$ d $和Integer $ p $的$ \ ell_p $ -subspace问题所需的内存,表明它是$ω(ε^{ - 2(d-1)/(d+2p)})$ bits $ bits和$ \ tilde {o} {o}(ε^{ε^{-2(d-d-1)/(d-1)这表明,对于任何常量的$ d $,可以击败$ω(ε^{ - 2})$下限,该$ to $ d =ω(\ log(1/ε))$。我们还展示了如何在单个通过流中实现上限,并具有附加的乘法$ \ perepatorName {poly}(\ log \ log \ log n)$ factor和一个添加$ \ permatatorName {poly}(\ log log n)$中的内存中的成本。我们的界限可以应用于具有添加误差的SVM的点查询,并产生$ \tildeθ(ε^{ - 2d/(d+3)})$的最佳结合。这是对$ω(ε^{ - (d+1)/(d+3)})$下限(Andoni等人2020)的下限。我们的技术依赖于几何功能分析与低维技术的新联系。
In the $\ell_p$-subspace sketch problem, we are given an $n\times d$ matrix $A$ with $n>d$, and asked to build a small memory data structure $Q(A,ε)$ so that, for any query vector $x\in\mathbb{R}^d$, we can output a number in $(1\pmε)\|Ax\|_p^p$ given only $Q(A,ε)$. This problem is known to require $\tildeΩ(dε^{-2})$ bits of memory for $d=Ω(\log(1/ε))$. However, for $d=o(\log(1/ε))$, no data structure lower bounds were known. We resolve the memory required to solve the $\ell_p$-subspace sketch problem for any constant $d$ and integer $p$, showing that it is $Ω(ε^{-2(d-1)/(d+2p)})$ bits and $\tilde{O} (ε^{-2(d-1)/(d+2p)})$ words. This shows that one can beat the $Ω(ε^{-2})$ lower bound, which holds for $d = Ω(\log(1/ε))$, for any constant $d$. We also show how to implement the upper bound in a single pass stream, with an additional multiplicative $\operatorname{poly}(\log \log n)$ factor and an additive $\operatorname{poly}(\log n)$ cost in the memory. Our bounds can be applied to point queries for SVMs with additive error, yielding an optimal bound of $\tildeΘ(ε^{-2d/(d+3)})$ for every constant $d$. This is a near-quadratic improvement over the $Ω(ε^{-(d+1)/(d+3)})$ lower bound of (Andoni et al. 2020). Our techniques rely on a novel connection to low dimensional techniques from geometric functional analysis.