论文标题
有效的代数,用于具有一个催化变量的功能方程系统的解决方案
Effective algebraicity for solutions of systems of functional equations with one catalytic variable
论文作者
论文摘要
我们在一个催化变量中研究了$ n \ geq 1 $离散的订单$ k \ geq1 $的离散微分方程,并提供了其解决方案代数的建设性和基本证明。这会产生有效的界限和一种用于计算最小多项式的系统方法。我们的方法是Bousquet-Mélou和Jehanne(2006)对开拓性工作的概括。
We study systems of $n \geq 1$ discrete differential equations of order $k\geq1$ in one catalytic variable and provide a constructive and elementary proof of algebraicity of their solutions. This yields effective bounds and a systematic method for computing the minimal polynomials. Our approach is a generalization of the pioneering work by Bousquet-Mélou and Jehanne (2006).