论文标题

使用未标记的合成数据无监督的面部识别

Unsupervised Face Recognition using Unlabeled Synthetic Data

论文作者

Boutros, Fadi, Klemt, Marcel, Fang, Meiling, Kuijper, Arjan, Damer, Naser

论文摘要

在过去的几年中,面部识别的主要研究创新集中在培训大规模身份标记数据集的深层神经网络,使用多类分类损失的变化。但是,由于隐私和道德问题的增加,许多数据集被其创作者撤退。最近,已经提出了对隐私友好的合成数据,以替代对隐私敏感的真实数据,以遵守隐私法规并确保面部识别研究的连续性。在本文中,我们提出了一个基于未标记的合成数据(USYNTHFEE)的无监督面部识别模型。我们提出的USNTHFACE学会了最大化同一合成实例的两个增强图像之间的相似性。除了基于GAN的增强外,我们还可以通过大量的几何和颜色转换来实现这一目标,这有助于USYNTHFACE模型训练。我们还对USNthface的不同组成部分进行了许多实证研究。通过提出的一组增强操作,我们证明了USNThface使用未标记的合成数据实现相对较高的识别精度的有效性。

Over the past years, the main research innovations in face recognition focused on training deep neural networks on large-scale identity-labeled datasets using variations of multi-class classification losses. However, many of these datasets are retreated by their creators due to increased privacy and ethical concerns. Very recently, privacy-friendly synthetic data has been proposed as an alternative to privacy-sensitive authentic data to comply with privacy regulations and to ensure the continuity of face recognition research. In this paper, we propose an unsupervised face recognition model based on unlabeled synthetic data (USynthFace). Our proposed USynthFace learns to maximize the similarity between two augmented images of the same synthetic instance. We enable this by a large set of geometric and color transformations in addition to GAN-based augmentation that contributes to the USynthFace model training. We also conduct numerous empirical studies on different components of our USynthFace. With the proposed set of augmentation operations, we proved the effectiveness of our USynthFace in achieving relatively high recognition accuracies using unlabeled synthetic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源